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1. INTRODUCTION

Designers increasingly use FPGAs to implement complex systems-on-chip that require frequent
communication, sharing, queuing, and synchronization among distributed functional units and
compute nodes. These high-contention storage mechanisms often contain multi-ported memories
that allow multiple simultaneous reads and writes. For example, the register file of an FPGA-
based, scalar, in-order MIPS-like soft processor requires one write port and two read ports, while
processors that issue multiple instructions more require even more ports. However, constructing a
multi-ported memory solely out of FPGA logic elements results in an inefficient solution [LaForest
and Steffan 2010]. Furthermore, FPGA substrates typically provide block RAMs (BRAMs) with
only two ports, hence memories with more than two ports must be “soft”, i.e., constructed using
logic elements and/or hard BRAMs. The ability to construct efficient soft multi-ported memories
remains important as it frees FPGA vendors from having to include in their device fabrics costlier
hard BRAMs with more than two ports.

1.1. Conventional Approaches

We can implement a multi-ported memory using only the basic logic elements of an FPGA, as
illustrated in Figure 1 which shows a D-location memory with m write ports and n read ports. For
now we consider only memories with unidirectional ports; we consider memories with bidirectional
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Fig. 1. A multi-ported memory implemented using FPGA logic blocks, having D single-word storage locations (S), m
write (W ) ports, and n read (R) ports (denoted as mW/nR), and n temporary registers r. We show only read and write
data lines (i.e., not address lines).
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Fig. 2. Three conventional techniques for providing more ports given a 1W/1R memory (we do not depict read and write
address values, only data values): (a) Replication maintains an extra copy of the memory to support each additional read port,
but supports only a single common write port; (b) Banking divides data across multiple memories, but each read or write
port can only access one specific memory (fracturing access to data); (c) Multipumping multiplies the number of read/write
ports of a memory by adding internal data and address multiplexers and temporary registers (r), and internally clocking the
memory at a multiple of the external clock (that quickly degrades the maximum external operating frequency).

ports later in Section 7. As shown, we require D m-to-one multiplexers to steer writes to the
appropriate memory locations, and n D-to-one multiplexers to allow each read to access any
memory location. Note also the registered read outputs necessary (r) to implement a synchronous
memory that holds the outputs stable between clock edges. This circuit scales very poorly with
memory depth: the area and the decoding/multiplexing increase rapidly, severely limiting the
maximum operating frequency.

We normally implement memories on FPGAs more efficiently using the provided block RAMs,
which can be quite denser than logic registers (e.g., 9, 18, or 36 Kbits) while supporting high
operating frequencies (e.g., 550 MHz [Altera 2012; Xilinx 2012]). However, FPGA block RAMs
currently provide only two ports for reading and/or writing. Note that Altera’s defunct Mercury
line of Programmable Logic Devices (PLDs) [Altera 2003] previously provided quad-port RAMs to
support gigabit telecommunications applications—however, this feature does not exist in any other
Altera device, likely due to the high hardware cost.

System designers therefore used one or a combination of three conventional techniques, as shown
in Figure 2, to increase the effective number of ports of FPGA block RAMs. The first, replication,
increases the number of read ports by maintaining a replica of the memory for each additional
read port. However, this technique alone cannot support more than one write port since the single
common external write port must be routed to each block RAM, using up its second port, to keep it
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up-to-date. The second technique, banking, divides memory locations among multiple block RAMs
(banks), allowing each additional bank to provide an additional read and write port. However, with
this approach each read or write port can only access its corresponding memory fraction—hence a
pure banked design does not truly support sharing across ports.

The third technique, that we call “multipumping”, includes any memory design internally
clocked at a multiple of the external clock to provide the illusion of a multiple of the actual number
of ports and allowing a designer to trade speed for area reduction. For example, running a 1W/1R
(one write and one read) memory internally at twice the external clock frequency can give the
illusion of a 2W/2R memory. A multipumped design must also include multiplexers and registers
to temporarily hold the addresses and data of pending reads and writes, and must carefully define
the ordering of reads and writes. While reasonably straight-forward, a multipumped design has the
drawback that each increase in the number of ports dramatically reduces the maximum external
operating frequency of the memory. LaForest and Steffan [LaForest et al. 2012] present a detailed
analysis of the impact of multipumping on multi-ported memory designs which we do not repeat
here.

1.2. The Live-Value Table (LVT) Approach

The Live Value Table (LVT) approach [LaForest and Steffan 2010] augments a banked approach
with a table that uses output multiplexers to steer reads to the most recently updated bank for each
memory address. The LVT approach improves significantly on the area and speed of comparable
designs built using only logic elements, and often results in the fastest design. The LVT approach
can also support the implementation of multi-ported memories having bidirectional ports [Choi et al.
2012].

1.3. The XOR-Based Approach

The XOR operation (⊕) has interesting and useful properties, particularly that A ⊕ B ⊕ B = A.
Network coding schemes [Katti et al. 2006] commonly use XOR to transmit coded/mixed values
together rather than individually, to later decode/unmix them at the receiver. RAID systems [Patter-
son et al. 1988] also use XOR to implement parity and provide data recovery capability should one
hard-drive of an array of drives fail.

Similar to the LVT approach, the XOR approach to multi-ported memories [LaForest et al. 2012]
internally uses banking and replication. However, the XOR design avoids the need for a Live Value
Table to direct reads and thus also avoids the corresponding output multiplexing, instead allowing
the logic of each read port to consist solely of an XOR of values read from all banks of BRAMs.
We demonstrate that XOR designs consume less logic but require more BRAMs than corresponding
LVT designs, and that some configurations of XOR designs can run faster and consume less total
area than the equivalent LVT designs.

1.4. Contributions

In this work, we extend and refine the results of prior publications [LaForest and Steffan 2010;
LaForest et al. 2012]:

(1) we present the Live Value Table (LVT) design for implementing multi-ported memories;
(2) we present an alternative XOR-based design for implementing multi-ported memories;
(3) we thoroughly compare the speed and resource usage of pure-LE, LVT, and XOR approaches.

In addition to the above revisions, in this article we also make the following new contributions:

(4) we expand the explored space of memories to include both smaller and greater depths, and with
a larger number of ports;

(5) we repeat our evaluations on Xilinx Virtex-6 devices, using the ISE 14.1 CAD tools (in
Section 6), evaluating multi-ported memories for the first time across both major FPGA vendors;
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Fig. 3. Live Value Table (LVT) designs: (a) a specific 2W/2R design, and (b) a generalized mW/nR design.

(6) for the LVT-based design with bidirectional ports recently proposed by Choi et al. [Choi et al.
2012], we thoroughly explore the parameter space and compare with the pure-LE alternative (in
Section 7);

(7) we compare the speed and area of unidirectional and bidirectional memories under different port
configurations on Altera devices (in Section 8);

(8) we present a single, simple, and accurate predictive area model for all memory designs on Altera
devices (in Section 9).

2. THE LIVE VALUE TABLE DESIGN

The Live Value Table (LVT) multi-ported memory design allows for a BRAM-based implementation
of a memory with more than one write port instead of having to build such a memory solely
from logic elements. Basically, an LVT design augments a banked memory with the ability to
connect each read port to the most-recently written bank for a given memory location. In this
section, we briefly summarize the construction and operation of the LVT design; see LaForest and
Steffan [LaForest and Steffan 2010] for a full treatment.

As a simple example, Figure 3(a) shows a two-write-two-read (2W/2R) LVT-based memory. Each
write port requires its own bank of BRAMs, with each bank containing two BRAMs to supply the
two read ports. Each read port contains a multiplexer driven by the LVT, which selects the most-
recently written (a.k.a. live) bank for the given read address. The LVT consists of a 2W/2R memory
composed of logic elements (e.g., Altera’s ALMs), of the same depth as the BRAM banks, but only
as wide as the log2 of the number of write ports (typically, 1-3 bits)—and hence requires much less
area and runs faster than an entire word-wide 2W/2R memory built out of logic elements. Since
the LVT is itself a multi-ported memory requiring the same number of read and write ports as the
external memory ports, we implement it using logic elements.
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Figure 3(b) shows a generalized mW/nR LVT design. Again, each write port has a bank of
BRAMs, with each bank internally replicated into a 1W/nR memory for an overall memory with n
external read ports. The replication of BRAMs within a bank creates a memory with a single write
port, common to every BRAM inside, plus a read port from each internal BRAM feeding into one
of each of the output multiplexers. In total, an LVT design requires m·n BRAMs plus the logic
required to implement the LVT and the multiplexers.

We add forwarding logic around the BRAMs of the LVT design, similar to that shown later in
Figure 4(b) for the XOR design, to increase clock frequency at a modest area cost. Forwarding logic
bypasses a BRAM such that if a write and a read operation access the same location during the same
cycle, the read will return the new write value instead of the old stored value. To remain compatible
with the expected behavior of a one cycle read-after-write latency, we register the write addresses
and data to delay them by one cycle. Using forwarding increases the maximum operating frequency
of the BRAMs from 375 MHz to 550 MHz, as per the Stratix IV FPGA BRAM specifications [Altera
2012].1

For LVT-based memories, we have found that the LVT table and the output multiplexers together
(i) constitute the critical path, and (ii) can require a significant number of logic elements to
implement as the memory deepens. In the next section, we pursue an alternative design that avoids
both of these disadvantages.

3. AN XOR-BASED DESIGN

In this section, we overcome the drawbacks of the LVT design by eliminating the narrow but multi-
ported LVT and the output multiplexers it controls. As we mentioned in the Introduction, our design
aims for each read port to require only the computation of the XOR of values read from BRAMs. We
start with a review of some of the properties of XOR and gradually build-up a general XOR-based
multi-ported memory design.

3.1. XOR Properties and Basic Use

The bitwise XOR operation (⊕) is commutative, associative, and has the following properties:

— A⊕ 0 = A
— B ⊕B = 0
— A⊕B ⊕B = A

The third property, which follows from the first two, implies that we can XOR two values A
and B together and later recover A by XORing the result with B. We can exploit this property
to allow the XOR of two instances of a memory location to return the most recent version. For
example, suppose M [location1] contains some OLD value, and then we save a new value A in
a corresponding M [location2] by XORing it with the OLD value, i.e., by storing A ⊕ OLD in
M [location2]. Explicitly: M [location2] = A⊕M [location1] = A⊕ OLD. We can then recover
A (i.e., read the most recently-written value) by simply returning the XOR of the two locations,
without having to select between them. Explicitly: output = M [location2] ⊕ M [location1] =
(A ⊕ OLD) ⊕ OLD = A. This scheme allows two write ports to write to two separate BRAMS
(or banks of BRAMs) simultaneously (like the LVT design), while read ports need only XOR the
contents of a BRAM location across all banks to return the most recent value (unlike the LVT design,
which requires output multiplexing).

3.2. Simple XOR Designs

To begin a detailed example, we use the basic properties of XOR to construct a simple 2W/1R
memory out of dual-ported BRAMs, as illustrated in Figure 4(a). Note that the figure shows only

1Normally, a BRAM internally performs a read on the clock rising edge and a write on the falling edge. Allowing both to
occur on the same edge raises the operating frequency, but corrupts the read data, hence the need for forwarding logic to
discard the bogus data coming from the BRAM read lines when the read and write addresses coincide.
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Fig. 4. XOR-based multi-ported memory design. Subfigure (a) shows a 2W/1R memory implemented using XOR, with
example data values. Note that we only show data wires. W0 stores the value A XOR’ed with the old contents (OLD1)
of the other bank. Similarly, W1 stores the value B XOR’ed with the old contents (OLD2) of the other bank. Reading the
location containing A computes (A⊕ OLD1)⊕ OLD1 which returns A. Subfigure (b) outlines the details of the address
wires, registers, and forwarding circuitry used in the XOR design, not shown in other figures for simplicity. Subfigure(c)
depicts a 2W/2R memory implemented using XOR. Compared to the 2W/1R memory in Figure 4(a), an additional column
of BRAMs (in the center) supplies data to the additional read port. Subfigure (d) describes a generalized mW/nR memory
implemented using XOR. Each write port requires a bank (row) of BRAMs, while each read port requires a column of
BRAMs. Additionally, the write ports also require extra columns in their banks (one for each of one less than the total

number of write ports) to provide the old data for the other write ports to XOR with their new data. These extra columns
receive the write addresses (as read addresses) without going through the initial registers shown in Subfigure (d).

data wires and their values. Each write port (W0,W1) has its own bank of two BRAMs, set in a row.
Each write port copies its data to both BRAMs so that corresponding locations in every BRAM in a
bank always hold the same value. When the write port W0 stores the value A to the upper locations
(in grey), it first XORs A with the old value (OLD1) from the same location in W1’s bank. Similarly,
when the write port W1 stores the value B to the lower locations (also in grey), it first XORs B with
the old value (OLD2) from the same location in W0’s bank .

We implement the read port circuitry without multiplexing, solely the XOR of BRAM outputs.
Reading the upper location computes the XOR of both versions from both the upper and lower
banks, which results in isolating the value most recently stored to that location by computing (A⊕

OLD1)⊕OLD1, which returns A.
However, the XOR design requires that a read precedes each write: We must store the XOR of the

new write value with the old value read from the same location in the other bank. This constraint
both increases the number of BRAMs to provide the needed read ports, and forces writes to take two
cycles to complete since a read from the other bank must complete first. However, we can keep the
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XOR design black-box-compatible with previous designs and give the illusion that writes effectively
take only one cycle with two additions to the design, as illustrated in Figure 4(b): First, we register
the write port address and data to the write ports’ BRAMs to delay them by one cycle, during which
we use the write address to perform the associated preceding internal read. Second, we instantiate
forwarding circuitry that allows the write data to flow directly to the read data port in the event
that we read a location in the cycle immediately following a previous write to the same location.
For simplicity, we do not show these extra registers and forwarding logic other than in Figure 4(b).
Quartus implements forwarding logic automatically when given the appropriate behavioral Verilog
description of a BRAM.

We can add another read port to extend this 2W/1R memory to 2W/2R, as shown in Figure 4(c).
The 2W/2R memory functions in the same manner as the 2W/1R design, except that another column
of BRAMs (in the center) provides data for the additional read port, without needing changes to the
write port logic.

To summarize the XOR design, each time we write to a given location in a particular memory
bank, we XOR the new data with the old contents from the same location in all the other banks. To
read a location we calculate the XOR of the values in that location across all banks, which recovers
the latest value written.

3.3. A Generalized XOR Design

In Figure 4(d), we present a generalized mW/nR XOR design. Each write port has its own bank
(row) of BRAMs. To write a value to a location in a given write port bank, we XOR the new value
with all of the old values from that same location in all the other banks, and then store the result of
that XOR in all the BRAMs of the write port bank. Therefore, the XOR design also requires extra
column of BRAMs, of number one less than the number of write ports, to provide sufficient internal
read ports to support writing without delay. Furthermore, each external read port requires its own
column of BRAMs. Overall, an XOR design requires m ∗ (m− 1+n) BRAMs to provide m writes
and n reads.

4. EXPERIMENTAL FRAMEWORK (ALTERA)

In this section, we provide details about block RAMs, the memory designs that we study, our CAD
flow, and our method for measuring speed and area. We focus on Altera devices and their CAD flow,
but later in Section 6 we consider the same for Xilinx devices.

4.1. BRAM Memory

Modern FPGAs usually implement BRAMs directly as ASICs. These BRAMs typically have two
ports that can each function either as a read or a write port. BRAMs use less area and run at a higher
frequency than similar memories created from the FPGA’s reconfigurable logic, but do so at the
expense of having a fixed storage capacity and number of ports.

The Stratix IV FPGAs mostly contain M9K block RAMs2, which hold 9 kilobits of information at
various word widths and depths. At a width of 32 bits, an M9K holds 256 words. When configured
as a “simple dual-port” memory with one fixed read port and one fixed write port, an M9K has a
published maximum operating frequency of 550 MHz, which may decrease depending on the actual
target device. When configured in “true dual-port” mode, where both ports can do either a read or
a write each cycle, the M9K maximum published operating frequency drops to 375 MHz [Altera
2012].

2Stratix IV FPGAs also contain larger M144K and smaller MLAB memories. There are too few M144Ks to fully
explore the design space, and past work demonstrated that using MLABs to construct multi-ported memories scales very
poorly [LaForest and Steffan 2010].
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4.2. CAD Flow

We implement all the designs in generic Verilog-2001 without any vendor-specific modules. We
place our circuits inside a synthesis test harness designed to both: (i) register all inputs and outputs
to ensure an accurate timing analysis, and (ii) to reduce the number of I/O pins to a minimum as the
larger circuits will not otherwise fit on the FPGA. The test harness also avoids any loss of circuitry
caused by I/O synthesis optimizations: Shift registers expand single-pin inputs, while registered
AND-reducers compact word-wide signals to a single output pin. We use Altera’s Quartus 12.0 to
target the Stratix IV EP4SE530H40C2 FPGA, a device of the highest available speed grade and
containing 1280 M9K BRAMs.

We configured the synthesis process to favour speed over area and enabled all relevant optimiza-
tions, including circuit transformations such as register retiming. The impact on area of register
retiming varies, depending on the logic found beyond the I/O registers, so the absolute results
presented here might not appear in a real system. However, comparing our various designs inside
a real system would yield proportionally similar results. We tested all designs inside identical test
harnesses.

We configured the place and route process to make a standard effort at fitting with only two
constraints: (i) to avoid FPGA I/O pin registers to prevent artificially long paths that would affect
the clock frequency, and (ii) to set the target clock frequency to 550 MHz: the maximum clock
frequency specified for M9K BRAMs. Similarly, for pure-LE design that do not use BRAMs we
set the target to 800 MHz, the rated limit of the clock tree feeding the Adaptive Logic Modules.
Setting a higher target Fmax does not improve results, and may in fact worsen them (on average) if
a slower, derived clock exists and thus aims towards an unnecessarily high target frequency, causing
competition for fast paths. We define all clocks as externally generated and any of their fractions
(e.g., half-rate) used in multipumping designs as synchronous to the main system clock (i.e., when
generated by a PLL).

We report maximum operating frequency (Fmax) by averaging the results of ten place and route
runs, each starting with a different random seed for initial placement. We select the worst-case
Fmax report (slow corner/high temperature) for the default range of die temperatures of 0 to 85◦C.
Similarly, we also report an averaged area usage.

4.3. Measuring Area

When comparing designs as a whole, we report area as the Total Equivalent Area (TEA), which
estimates the actual silicon area of a design point: we calculate the sum of all the Adaptive Logic
Modules (ALMs) used partially or completely, plus the area of the BRAMs counted as their
equivalent area in ALMs. A Stratix IV ALM contains two Adaptive Lookup Tables (ALUTs),
each roughly equivalent to a 6-LUT, two adder and carry-chain stages, and two flip-flops. Wong et
al. [Wong et al. 2011] provide the raw layout area data: one M9K BRAM has an area equivalent to
28.7 ALMs. Previously [LaForest and Steffan 2010], we had to use a derived estimate of equivalent
area.

4.4. Design Parameters Considered

For simplicity, we consider only the common case of 32-bit-wide memories. We do not consider
one-write-one-read (1W/1R) memories as they directly map to a single FPGA BRAM. Similarly,
replication trivially enables 1W/nR memories. The challenge lies in creating concurrent multiple
write ports. Overall, we consider two design classes: “unidirectional” memories, where some ports
always read and some always write, and “bidirectional” memories where all ports can either read or
write.

Although the internal implementations vary, we ensure that all designs function as “black-box
equivalent” from an outside point of view. Specifically, all ports operate simultaneously within
a single external clock cycle, and any latencies between writing and subsequently reading data
remain equal across designs. Any one design can substitute for another within a system, with clock
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(a) LE (1024 words) (b) LVT (8192 words) (c) XOR (8192 words)

Fig. 5. Resource layout of (a) a 1024-deep 2W/4R pure-LE memory, and 8192-deep 2W/4R memories for (b) LVT, and
(c) XOR designs, as rendered by Quartus. The thin columns represent BRAMs or DSPs (darkened indicates in-use), the dots
and dot-clouds point out ALMs.

frequency and resource usage as the only differences. We do not consider memories that may stall
(e.g., take multiple cycles to perform a read or write if there exists a resource conflict), although
such designs suggest compelling future work. Finally, we assume that multiple simultaneous writes
to the same address result in undefined behavior and that the enclosing system avoids these conflicts.

We evaluate a representative sample from the range of multi-ported memory configurations
having 2 to 8 write ports and 4 to 16 read ports: 2W/4R, 4W/8R, and 8W/16R. We explore
these configurations over memory depths of 2 to 8192 words, although some designs with depths
exceeding 2048 words begin to consume a major fraction of the targeted device, making them
potentially impractical for current-day applications.

5. COMPARING PURE LE, LVT, AND XOR DESIGNS (ALTERA)

In this section we compare the pure-LE (Logic Elements), LVT, and XOR approaches to imple-
menting multi-ported memories. We begin by illustrating example resource usage and layout of
the three design approaches. Next, we compare in detail the speed and resource usage of a broad
range of memories of varying depths and numbers of ports. Finally, we summarize the design space
by highlighting the designs that minimize delay, ALM usage, or BRAM usage. For now, we focus
solely on Altera devices/CAD; later in Section 6 we consider Xilinx devices/CAD.

To illustrate the resource diversity of the pure-LE, LVT, and XOR approaches, we present in
Figure 5 the resource layout of a 1024-deep 2W/4R pure-LE memory alongside those of 8192-deep
2W/4R LVT and XOR memories, as rendered by Quartus. The thin columns represent BRAMs or
DSPs, while the dots and dot-clouds represent ALMs. Darkened areas represent in-use resources.
We chose these memory depths because of the large resulting designs relative to the total capacity
of the chip, and to emphasize the differences between the designs. All three designs have the same
memory width (32 bits), and consume resources in a centered, somewhat circular pattern due to
Quartus’s efforts to minimize delay and resource consumption. While the pure-LE design consumes
no BRAMs, the XOR design consumes more BRAMs than the LVT design (and hence has taller
columns of in-use BRAMs). Conversely, the LVT design consumes more ALMs than the XOR
design, and the pure-LE design consumes the most by far. Since a multi-ported memory normally
exists within a larger design, one can see how the XOR memory would integrate better with an
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(c) 4W/8R: Fmax vs. Total Equivalent Area
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Fig. 6. Altera results: speed and area for LE, LVT, and XOR implementations of 2W/4R, 4W/8R, and 8W/16R memories
of increasing depth (as will fit on the FPGA device). For each chart, we show the average unrestricted Fmax vs average
Total Equivalent Area (on the left), as well as BRAM usage vs averaged ALM usage (on the right). The dotted line shows
the 550 MHz restricted Fmax for unidirectional designs using BRAM running in simple dual-port mode.

enclosing design that consumes many ALMs, while the LVT and pure-LE designs would integrate
better with an enclosing design that demands many BRAMs.
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8 LE LE LVT

16 LE LVT LVT
32 LE LVT LVT
64 LE/LVT LVT LVT

128 LVT LVT/XOR LVT
256 XOR LVT/XOR LVT
512 XOR XOR LVT
1K XOR XOR LVT
2K XOR XOR LVT
4K XOR XOR LVT
8K XOR XOR LVT

(a) 2W/4R
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4 LE LE LVT
8 LE LE LVT

16 LE LE LVT
32 LE LVT LVT
64 LVT LVT LVT

128 LVT/XOR LVT LVT
256 LVT/XOR XOR LVT
512 LVT/XOR XOR LVT
1K XOR XOR LVT
2K XOR XOR LVT
4K XOR XOR LVT

(b) 4W/8R
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8 LE LE LVT
16 LE LE LVT
32 LE/LVT LE LVT
64 LVT LVT LVT

128 LVT LVT LVT
256 LVT/XOR XOR LVT
512 LVT/XOR XOR LVT
1K XOR XOR LVT

(c) 8W/16R

Fig. 7. Altera design space navigation: for each memory depth, we list the design that minimizes either delay (i.e., has the
highest Fmax), the number of ALMs used, or the number of BRAMs used, for (a) 2W/4R, (b) 4W/8R, and (c) 8W/16R
memories. We consider results within 5% as “equal” and list multiple designs then.

In Figure 6, we compare pure-LE, LVT, and XOR implementations of 2W/4R, 4W/8R, and
8W/16R memories, with depths varying from 2 entries up to 8192, as can fit on the FPGA device—
XOR and LVT memories with more ports exhaust the available BRAMs more quickly, and pure-
LE memories rapidly consume all available ALMs. In the leftmost figures, we plot the average
unrestricted maximum operating frequency (Fmax) versus the average area. (A minimum clock
pulse width requirement for the BRAMs restricts the actual Fmax to 550 MHz on Stratix IV devices,
despite having a lower actual propagation delay.) We report the Total Equivalent Area (TEA) in
terms of ALMs, that accounts for both the ALM and BRAM usage in a single measure, as described
in Section 4. Note the logarithmic x-axis for TEA.

5.1. Fmax vs Area

Using the results for the 2W/4R memories (Figure 6(a)) as an example, we observe that the pure-LE
designs show a clear Fmax advantage for depths of up to 32 entries, losing ground to LVT at 64
entries, and slowing down below LVT and XOR at 128 entries and beyond. The TEA of LE designs
grows rapidly: both LVT and XOR use less area, in all cases, for depths greater than 16 entries. For
depths up to 128 entries, the LVT designs have better Fmax and TEA than XOR designs but then
lose on both counts past 256 entries, having a somewhat lower Fmax and about twice the TEA of
XOR designs at greater depths due to multiplexing overhead and the increasing area of the Live
Value Table itself. Overall, the pure-LE approach benefits the smallest designs, the LVT approach
works best (or at least as well as XOR) for moderate design sizes, while deeper designs save more
area and gain more speed from the XOR approach.

5.2. BRAMs vs ALMs

The rightmost figures of Figure 6 explode our TEA metric into the actual numbers of BRAMs and
ALMs consumed by the LVT and XOR designs—note both logarithmic axes. Using Figure 6(b) as
an example, the two designs clearly exhibit resource diversity, with XOR designs consuming far
fewer ALMs but more BRAMs than the corresponding LVT designs. Hence the relative availability
of ALMs or BRAMs in a given encompassing design plays a large role in the selection of the best
choice of multi-ported memory implementation. However, the number of BRAMS used remains
constant, for both designs, over depths of 2 to 256 entries, reflecting the native capacity of each
BRAM. The number of ALMs used by XOR memories grows very slowly as memory depth
increases, since ALMs implement the XOR operations, which do not widen as memory depth
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increases3, and forwarding logic, which grows linearly with the number of BRAMs, rather than
depth. In contrast, the number of ALMs used by LVT memories grows quickly since ALMs
implement the Live Value Table (itself a pure-LE memory, which scales poorly with depth) and
the read port multiplexers, whose number of inputs increases linearly with the number of BRAMs
used. Finally, XOR designs consume more BRAMS than the corresponding LVT designs due to the
extra replicated memories required to support the write port XOR operations. For example, at 8192
entries the XOR design consumes 25% more BRAMs than the LVT design.

5.3. Increasing Ports

Figures 6(c)-(f) plot the same results previously discussed, but for 4W/8R and 8W/16R memories,
that show similar overall trends as the 2W/4R memories. For memories having more than 256
entries, the XOR designs consume less TEA with the relative savings increasing with the number of
entries: e.g., for 2W/4R 8192-entry memories the XOR design is 51% of the area of the LVT design.
This TEA difference persists in 4W/8R and 8W/16R memories. As the number of ports increases,
XOR designs become comparatively slower than LVT designs at shallower depths, due to the initial
overhead of write port XOR operations.

The characteristics of pure-LE designs become increasingly irregular as the number of ports
increases. For example, at 8W/16R ports, the Fmax of the 128-deep pure-LE design unexpectedly in-
creases due to the impact of multiplexer restructuring by the CAD tools. Disabling that optimization
for this case yields the alternate 128 NMR data point (on the dotted line), which follows the expected
curve. However, also at 8W/16R ports, the TEA of the shallowest (2 to 32 entries) pure-LE designs
becomes considerably smaller than the equivalent LVT and XOR designs. Contrary to designs that
use block RAMs, pure-LE designs do not increase the amount of internal data replication as the
number of ports increases, but only add more input/output multiplexing and registering.

Finally, Figure 6(f) shows that although the ALM and BRAM usage of the LVT and XOR designs
increases in proportion to the product of the number of read and write ports (e.g., going from
2W/4R to 4W/8R quadruples the resources required for a memory of the same depth), the relative
proportions and trends remain unchanged.

5.4. Navigating the Design Space

A system designer would ask “Which memory design should I use given my constraints?”. To
summarize the design space, we list in Figure 7 the design that, for each memory depth, minimizes
delay (i.e., has the highest Fmax), the number of ALMs used, or the number of BRAMs used,
displayed for (a) 2W/4R, (b) 4W/8R, and (c) 8W/16R memories. We consider results within 5% of
each other as effectively equal, due to normal CAD variations, and label them as such by listing all
equal designs.

Overall, pure-LE designs have the highest speed for memories of less than 64 entries, regardless
of port count. LVT designs initially (e.g., at 2W/4R ports) fill a narrow depth range for best speed
between the pure-LE and XOR designs, but this range grows as the number of port increases. The
trend reverses for area: as the port count increases pure-LE memories gradually use relatively fewer
ALMs (compared to LVT designs) for shallow memories since they do not replicate memory. In all
cases, the LVT designs use the least number of BRAMs. The properties of XOR memories change
little with the number of ports; however, running out of BRAMs at shallower depths limits our
analysis.

6. COMPARING PURE LE, LVT, AND XOR DESIGNS (XILINX)

In this section, we repeat our evaluation of pure-LE, LVT, and XOR designs in the Xilinx environ-
ment. We target Virtex-6 FPGAs as the most similar to the Altera Stratix IV devices measured in the
previous section. We describe the Virtex-6 BRAMs, our CAD flow, our method of measurement,

3We include, but do not analyze, the area contribution of the multiplexers automatically created by the CAD tool to unite
multiple BRAMs into a single deeper/wider memory bank.
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and the results. However, we cannot chart the Total Equivalent Area (TEA) since we do not have
any data about the area of the Virtex-6 BRAMs.

6.1. Virtex-6 Slices and BRAMs

We use Xilinx ISE 14.1 to target the Virtex-6 XC6VHX380T FPGA, a device of the highest available
speed grade and containing 768 36-Kb BRAMs, and 59,760 slices. The slice is the Virtex-6 standard
logic element, analogous to Altera’s ALM. A Virtex-6 slice contains four six-input look-up tables
and eight registers, as well as multiplexers and carry logic.

Virtex-6 BRAMs have a capacity of 36 Kbits configurable to various word-widths and depths, and
can also function as two independent 18 Kbit BRAMs. For example, at a width of 32 bits (which
we assume throughout), a BRAM holds 1024 words when configured in “simple dual-port” mode
(one fixed read port and one fixed write port). To ensure that Xilinx implementations remain “black-
box equivalent” to the Altera implementations, we must configure the BRAMs into read first mode,
where a read returns the old value of a location even if there is a write to that same location in that
same cycle, and then ensure the CAD tools automatically generate forwarding logic between the
write and read ports. In read first mode, BRAMs have a published maximum operating frequency
of 525 MHz for Virtex-6 devices of the highest speed grade [Xilinx 2012].

6.2. CAD Flow

We configured the synthesis process to favor speed over area. We measured all designs within a
test harnesses identical to that described in Section 4. We enabled all relevant optimizations except
for those allowing optimization across hierarchical boundaries (e.g., register retiming), since this
adjustment yielded better results. We report the worst-case Fmax (slow corner/high temperature)
for the default range of die temperatures of 0 to 85◦C.

When measuring the Fmax of a design in ISE, we must choose the target frequency carefully:
too-high a target results in a significantly slower design than a target closer to the actual achievable
Fmax; furthermore, ISE will not surpass a significantly lower target frequency. Hence, for each
design, we perform a process similar to a bisection search for the best achievable frequency: (i) the
initial run uses a target frequency equal to that of the limiting component (525 MHz for BRAM-
based designs, 800 MHz for pure-LE designs); (ii) the following run targets the average of the
previous target frequency and the Fmax of the previous run; (iii) we repeat this process until the
resulting Fmax lies within 10% of (or just surpasses) the target frequency. We then use this final
frequency target for the 10 seed runs used to compute the reported average speed and area of the
design.

6.3. Results

Figure 8 shows, in tabular form, the CAD results for Xilinx FPGAs for all three implementations of
multi-ported memories (pure-LE, LVT, and XOR) with varying numbers of ports (2W/4R, 4W/8R,
8W/16R) and memory depths (2 to 8129, as fits on the device). For each design point we report
Fmax (measured in MHz), the number of 36Kbit BRAMs used, and the number of slices used. We
had to omit some of the deeper memories (e.g., 2K and 4K 4W/8R LVT, and 128-deep 4W/8R pure-
LE) that conceivably should have fit, due to anomalously large place and route times that made their
exploration impractical.

Based on these CAD results, Figure 9 lists, for each port configuration and depth, the design that
minimizes either delay (i.e., has the highest Fmax), the number of slices used, or the number of
BRAMs used. Similar to the Altera results, and as expected, the LVT design minimizes the number
of BRAMs used for all port and depth configurations. The XOR design shows a remarkably stable
area (and therefore speed) as depth increases, regardless of port count.

For 2W/4R memories, the minimum delay crosses over from pure-LE to LVT at depth 32, and
to XOR at depth 1024. All three designs have very close initial (depths 2 to 4) slice counts, but
the area of the pure-LE design expands rapidly as depth increases. The 64-deep pure-LE design
shows anomalously high speed and low area, contrary to its expected 250 MHz speed and 6000
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CAD Result:
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16 473 1177
32 326 3379
64 454 1768
128 197 8590
256 159 12709
512 127 25938

(a) LE 2W/4R

CAD Result:
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2 410 43 4
4 408 45 4
8 404 48 4

16 406 64 4
32 403 71 4
64 404 104 4

128 395 149 4
256 401 201 4
512 398 524 4
1K 294 1655 8
2K 250 2913 16
4K 164 7127 32
8K 134 16984 64

(b) LVT 2W/4R

CAD Result:
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2 308 51 5
4 310 50 5
8 308 49 5

16 311 49 5
32 309 51 5
64 308 51 5

128 305 48 5
256 307 51 5
512 305 47 5
1K 299 60 10
2K 292 67 20
4K 290 76 40
8K 255 88 80

(c) XOR 2W/4R
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8 444 202
16 367 1177
32 256 3379
64 194 1768

(d) LE 4W/8R
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D
ep

th

Fmax Slices BRAMs

4 387 399 16
8 380 421 16

16 386 438 16
32 370 536 16
64 308 740 16

128 359 902 16
256 308 1190 16
512 228 2484 16
1K 213 5644 32

(e) LVT 4W/8R
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4 252 264 22
8 245 272 22

16 255 275 22
32 248 270 22
64 249 267 22

128 254 278 22
256 256 267 22
512 250 276 22
1K 238 289 44
2K 212 338 88
4K 193 359 176
8K 167 382 352

(f) XOR 4W/8R
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8 398 2452
16 304 4345
32 214 7574
64 142 14608
128 94 26038

(g) LE 8W/16R

CAD Result:
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Fmax Slices BRAMs

8 306 1596 64
16 283 1319 64
32 288 1992 64
64 271 2462 64
128 260 2637 64
256 174 3644 64
512 120 7225 64
1K 104 20882 128
2K 89 33081 256

(h) LVT 8W/16R

CAD Result:

D
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th
Fmax Slices BRAMs

8 172 477 92
16 182 477 92
32 186 475 92
64 173 486 92

128 190 479 92
256 188 478 92
512 185 482 92
1K 136 501 184
2K 151 531 368
4K 109 559 736

(i) XOR 8W/16R

Fig. 8. CAD results on a Xilinx FPGA for multi-ported memories of varying implementation (pure-LE, LVT, and XOR)
over varying numbers of ports (2W/4R, 4W/8R, 8W/16R) and memory depths. For each design point we report the average
Fmax (measured in MHz), the number of 36Kbit BRAMs used, and the average number of slices used.

slices area, when approximated from the neighboring 32 and 128-deep results. This anomaly either
originates from the CAD tools, or from an unexpected interaction between the pure-LE design and
the architecture of the underlying FPGA device.

For 4W/8R memories, the minimum delay crossovers move down to half their depths at 2W/4R:
16 for LE-to-LVT, and 512 for LVT-to-XOR. However, contrary to the 2W/4R case, the pure-LE
design initially (depths 4 to 8) has the lowest slice count instead of LVT since the pure-LE design
does not replicate storage as the number of ports increases, contrary to the LVT and XOR designs.
However, the pure-LE’s multiplexing overhead rapidly undoes this advantage as depth increases.
The multiplexing overhead of the pure-LE design also shows up again when we increase the ports
to 8W/16R: although the LVT-to-XOR delay crossover moves down as expected from depth 512 to
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Design that minimizes:
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2 LE LVT LVT
4 LE LVT LVT
8 LE LVT/XOR LVT

16 LE XOR LVT
32 LVT XOR LVT
64 LE XOR LVT

128 LVT XOR LVT
256 LVT XOR LVT
512 LVT XOR LVT
1K LVT/XOR XOR LVT
2K XOR XOR LVT
4K XOR XOR LVT
8K XOR XOR LVT

(a) 2W/4R

Design that minimizes:
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Delay Slices BRAMs

4 LE LE LVT
8 LE LE LVT

16 LE/LVT XOR LVT
32 LVT XOR LVT
64 LVT XOR LVT

128 LVT XOR LVT
256 LVT XOR LVT
512 XOR XOR LVT
1K XOR XOR LVT

(b) 4W/8R

Design that minimizes:
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Delay Slices BRAMs

8 LE XOR LVT
16 LE XOR LVT
32 LVT XOR LVT
64 LVT XOR LVT

128 LVT XOR LVT
256 XOR XOR LVT
512 XOR XOR LVT
1K XOR XOR LVT
2K XOR XOR LVT

(c) 8W/16R

Fig. 9. Xilinx design space navigation: for each memory depth, we list the design that minimizes delay (i.e., has the highest
Fmax), the number of Slices used, or the number of BRAMs used, for (a) 2W/4R, (b) 4W/8R, and (c) 8W/16R memories.
We consider results within 5% as “equal”, and list multiple designs in such cases.
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Fig. 10. LVT-based bidirectional multi-ported memory designs: (a) a 3-port design, and (b) a generalized n-port design.
Note that these diagrams show only the data lines, without address wires.

256, the LE-to-LVT delay crossover returns to 32 due to the high initial slice count of the pure-LE
design.

7. MEMORIES WITH BIDIRECTIONAL PORTS (ALTERA)

All of the memory designs considered so far implement unidirectional ports, where we configure
each port at design-time for either only reading or writing. In this section, we describe and evaluate
multi-ported memories with bidirectional ports, where each port can perform a read or a write
dynamically selected each cycle.

Similar to the unidirectional memories we presented in the previous sections, we can build
bidirectional memories using only logic elements (ALMs) and also compose larger memories
more effectively using BRAMs. The initial work by Choi et al. presents a memory design having
bidirectional ports based on an LVT approach [Choi et al. 2012]. For convenience, we provide a
brief description of that design here.
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Fig. 11. Speed and area for LVT-based and pure-LE implementations of bidirectional memories of increasing depth for
designs with (a) 4 ports and (b) 14 ports. The the dotted line indicates the 375 MHz restricted Fmax for BRAM running in
true dual-port mode on Stratix IV devices.

Figure 10(a) shows a 3-ported bidirectional LVT-based memory. Basically, the design has each
possible pair of ports share a BRAM. Since there are three ports, there are three possible port
pairs, and hence the design requires three BRAMs. We configure each BRAM in true dual-port
mode, such that each port can dynamically switch from reading to writing each cycle. Note that a
minimum clock pulse width requirement for BRAMs running in true dual-port mode restricts the
actual Fmax to 375 MHz on Stratix IV devices. For each port, a Live Value Table (LVT) composed
of logic elements (ALMs) tracks which of its associated BRAMs holds the most recent value for a
given location. As before, we must implement the LVT as a multi-ported memory, in this case with
three read ports and three write ports.

Figure 10(b) shows a generalized bidirectional memory supporting n ports. The design requires
n(n− 1)/2 BRAMs, enough such that one BRAM connects together one of all possible port pairs,
and also requires an LVT with n read and write ports, itself driving n output multiplexers each
having n− 1 inputs.

7.1. Results

In Figure 11, we compare the Fmax and TEA for both pure-LE and LVT-based designs having a
range of depths and supporting two contrasting numbers of ports: (a) 4 ports and (b) 14 ports. For
4-port memories, the pure-LE designs have better Fmax and TEA for depths of 2 and 4. Beyond
4-deep, the LVT-based designs have better Fmax and TEA. For 14-port memories, pure-LE designs
have the lowest TEA for up to 16-deep memories, beyond which the LVT-based designs prevail.

In Figure 12, we plot the Fmax and TEA for LVT-based bidirectional memories with 3 to 16 ports
and depths ranging from 2 up to the maximum depth that fits the target Altera device (specified
in Section 4.2). We label each series as nports mK to indicate the number (n) of ports and the
maximum (m) depth in kilo-words (K) for that design. For example, the 3-port design can fit up to
4K entries, while the 16-port design can fit only up to 1K entries. The resulting frequency/area result
space shows a reasonably regular and predictable trend, with Fmax decreasing and TEA increasing
with memory depth for each design. The incremental cost of adding each additional port diminishes
with the total number of ports. At the greatest depths, the Fmax of most designs converges to around
150 MHz.

8. COMPARING UNIDIRECTIONAL AND BIDIRECTIONAL DESIGNS (ALTERA)

In this section, we compare the speed and area of unidirectional and bidirectional designs on
Altera devices. We compare the designs in two ways: (i) memories with the same total number
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Fig. 12. Speed and area results for LVT-based bidirectional memories with 3 to 16 ports and depths ranging from 2 up to
the maximum depth that fits the target device. We label each series as nports mK to indicate the number (n) of ports and
the maximum (m) depth in kilo-words (K) for that design. Note that a minimum clock pulse width requirement for BRAMs
running in true dual-port mode on Stratix IV devices restricts the actual Fmax to 375 MHz.

of ports, under the assumption that a unidirectional memory implements a specialization of a
bidirectional memory based on actual memory access patterns, and (ii) memories with the same
minimum equivalent read/write capacity, where a unidirectional nWnR memory can support the
same read/write access patterns as a n-port bidirectional memory in the worst case, as well as a
greater number of simultaneous reads and writes in the best case.

Figure 13 shows speed and area comparisons of: (i) bidirectional LVT memories against unidi-
rectional LVT and XOR memories with the same total number of ports: (a) 6 ports vs. 2w4r, (c)
12 ports vs. 4w8r, and (e) 24 ports vs. 8w16r, and (ii) between bidirectional and unidirectional
LVT memories with the same minimum equivalent read/write capacity: (b) 4 ports vs. 4w4r, (d) 8
ports vs. 8w8r, (f) 12 ports vs. 12w12r. The labels denote the depth of each memory design point,
and we excluded pure-LE designs for clarity. We report the unrestricted Fmax of all designs, but
frequency is actually restricted by the minimum clock pulse widths accepted by different BRAMs
configurations: 550 MHz for simple dual-port BRAMs used in unidirectional memories, and 375
MHz for true dual-port BRAMs used in bidirectional memories.

8.1. Same Total Number of Ports

When looking at Figures 13(a),(c), and (e), for depths exceeding a single BRAM (256 words),
bidirectional designs run about 100 to 150 MHz slower than unidirectional LVT designs of the
same depth. Unfortunately, the 375 MHz clock pulse width restrictions on true dual-port BRAMs
prevent the high speeds at depths of 32 words or less, which appear to exceed that of unidirectional
XOR memories, from ever appearing in actual use.

Regardless of any speed increase, replacing a bidirectional memory with an equivalent unidirec-
tional one reduces area to a much greater degree. For example, when replacing a 4096-word 6-port
bidirectional memory with a unidirectional 2w4r LVT or XOR memory, the area reduces 4.9x and
8.8x respectively. A designer could actually over-provision the number of unidirectional ports and
still save area: compared to the same 4096-word 6-port bidirectional memory, unidirectional 4w8r
LVT and XOR memories reduce area by 7.9% and 2.1x respectively, while still exceeding the Fmax

of the original bidirectional memory.

8.2. Same Minimum Equivalent Read/Write Capacity

In this experiment we over-provision unidirectional memories to have n read and n write ports, to
compare with an n-port bidirectional. In Figures 13(b),(d), and (f), we observe that for memories
of depth 64 and shallower, the area of the BRAMs dominates, and thus bidirectional memories are
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(b) 4w4r unidirectional vs 4 ports bidirectional
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(c) 4w8r unidirectional vs 12 ports bidirectional
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Fig. 13. Speed and area comparison of bidirectional LVT memories against unidirectional LVT and XOR memories with
the same total number of ports: (a) 6 ports vs. 2w4r, (c) 12 ports vs. 4w8r, and (e) 24 ports vs. 8w16r, and between
bidirectional and unidirectional LVT memories with the same minimum equivalent read/write capacity: (b) 4 ports vs. 4w4r,
(d) 8 ports vs. 8w8r, (f) 12 ports vs. 12w12r. The labels denote the depth of each memory. We report the unrestricted

Fmax of all designs, but the minimum clock pulse widths accepted by different BRAM configurations (indicated by dotted
lines) restrict the actual operating frequencies: 550 MHz for simple dual-port BRAMs used in unidirectional memories, and
375 MHz for true dual-port BRAMs used in bidirectional memories.
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Fig. 14. Illustration of the Total Equivalent Area (TEA) usage model for unidirectional and bidirectional multi-ported
memory designs. Solid lines denote the original data from our experiments, while the dotted lines show the corresponding
output of the area model. Most predicted points lie within 10% of the original data.

Design
Coefficients

a b c d e
LVT (UNIDIR) 479.685 -157.517 -7.073 57.605 2.411
XOR (UNIDIR) 442.033 -97.324 -2.980 75.754 1.043
LVT (BIDIR) 128.456 -62.333 -5.264 43.067 3.166

Fig. 15. Coefficients of the TEA usage model ALM = a+ b ∗ ports+ c ∗ depth+ d ∗ ports2 + e ∗ ports ∗ depth,
fitted to the lowest total absolute error.

smaller due to their lower BRAM count: n(n−1)/2 vs. n2 for n ports. Since bidirectional memories
are actually limited to a frequency of 375 MHz (due to for their use of true dual-port BRAMs),
the corresponding LVT designs have a frequency advantage but a TEA disadvantage compared to
bidirectional.

9. MODELING AREA USAGE (ALTERA)

In this section, we present a predictive model for the Total Equivalent Area (TEA) of our multi-
ported memories on the Altera platform. The same model, using different coefficients, accurately
predicts the TEA of unidirectional and bidirectional LVT memories, as well as unidirectional
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XOR memories. We found the equation and its coefficients by applying the pyeq2 curve-fitting
library [Phillips 2012] to our actual area data, resulting in the following equation:

TEA = a+ b ∗ ports+ c ∗ depth+ d ∗ ports2 + e ∗ ports ∗ depth (1)

We fitted the curve to the lowest total absolute error, weighing all points equally. We use port
count and memory depth as our independent variables, as the port count affects area quadratically
and multiplies the impact of depth. For bidirectional designs, the port count refers to the total number
of bidirectional ports. For unidirectional designs, the port count refers to the number of read ports.
Thus the given coefficients only apply to unidirectional memories with a 2:1 ratio of read ports to
write ports. We manually removed the quadratic depth term since area does not have a quadratic
relationship to depth: A near-zero coefficient introduces insignificant error even at large memory
depths.

Figure 15 lists the resulting coefficients for each memory design, as applied to Equation 1, while
Figure 14 compares the predicted TEA to the original data. Solid lines denote the original data from
our experiments, while the dotted lines show the corresponding output of the area model. Most
predicted points lie within 10% of the original data. The negative linear depth and port coefficients
act as corrections to the dominating ports2 and ports ∗ depth terms. Since this area model views
the CAD tool as a black box, we expect this model to only remain valid for Quartus 12.0, but serves
as evidence that such a model should be buildable for a given version.

10. RELATED WORK

Most prior work on multi-ported memories for FPGAs focuses on register files for soft-processors.
Simple replication provides the 1W/2R register file required to support a three-operand ISA [Yianna-
couras et al. 2006; Carli 2008; Altera 2011; Fort et al. 2006; Moussali et al. 2007]. Jones et al. [Jones
et al. 2005] implement a VLIW soft processor with a multi-ported register file, implemented
entirely in logic elements, that constituted the operating frequency critical path. Saghir et al. [Saghir
and Naous 2007; Saghir et al. 2006] also implement a multi-ported register file for a VLIW
soft-processor, but use only replication and banking of BRAMs; however, their compiler must
schedule register accesses to avoid conflicting reads and writes. Manjikian aggressively multipumps
memories by performing reads and writes on consecutive rising and falling clock edges within a
processor cycle [Manjikian 2003]—unfortunately, this design forces a multiple-phase clock on the
entire system.

More recently, Anjam et al. [Anjam et al. 2010a] successfully use a LVT-based register file
for their reconfigurable VLIW soft-processor and add one more internal addressing bit to enable
splitting a 4W/8R register file into two independent 2W/4R instances. Later work by Anjam et
al. [Anjam et al. 2010b] removes the need for the LVT by avoiding write bank conflicts via compile-
time register renaming, but this solution requires more registers than are architecturally visible.

Hayenga et al. [Hayenga and Lipasti 2011] recently proposed adding an XOR-coded bank between
two regular banks of an ASIC register file design, such that the XOR-coded bank augments the
number of reads and writes supported. This approach cannot translate directly to an FPGA as each
bank has 2W/4R ports. Our XOR approach differs in that all banks use XOR-coding. Naresh et
al. [Naresh et al. 2011] also recently proposed using XOR coding to implement a crossbar that
performs packet arbitration within a network-on-chip router.

11. CONCLUSIONS

In this article we described and evaluated, on both Altera and Xilinx FPGAs, several approaches
to implementing unidirectional multi-ported memories: pure-LE, Live Value Table (LVT) [LaForest
and Steffan 2010], and XOR [LaForest et al. 2012], along with an LVT approach to bidirectional
memories [Choi et al. 2012]. We found that:
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— pure-LE designs use no BRAMs, while the XOR designs use far less logic but more BRAMs
than the LVT designs, demonstrating a resource diversity between the three designs that makes
them each desirable for different use-cases;

— for the shallowest designs, building memories using pure-LEs (ALMs or slices) often results in
the highest Fmax or best area usage;

— the LVT approach always uses the least BRAMs;
— for moderate-depth designs the LVT approach is generally the fastest;
— for Xilinx FPGAs the XOR design almost always uses the fewest slices, while for Altera FPGAs

the pure-LEs, LVT, and XOR designs each use the fewest ALMs for shallow, moderate, and
high-depth designs respectively;

— unidirectional LVT memories that are over-provisioned to have the same read/write capability
are faster but larger than corresponding bidirectional memories;

— it is possible to build an accurate predictive area model for unidirectional and bidirectional LVT
memories.

To summarize, the pure-LE, LVT, and XOR approaches are valuable and useful in different
situations, depending on the constraints and resource utilization (BRAMs vs logic) of the enclosing
design. Designers can use the results of this work as a guide when choosing an appropriate multi-
ported memory implementation.

12. FURTHER WORK

Although we revisited and expanded our work on multi-ported memories, we still have many
directions not yet explored:

Bidirectional XOR Memories Although Choi et al. [Choi et al. 2012] extended unidirectional LVT
memories to bidirectional ports in a fairly straightforward manner, we have not yet determined how
to implement bidirectional XOR memories. Given the different logic and BRAM usage of XOR
and LVT memories, bidirectional XOR memories might provide another useful range of design
trade-offs.

Multi-Pumped LVT and XOR Memory Banks We had previously explored multipumped
unidirectional LVT memories [LaForest and Steffan 2010], but we have not yet explored the idea
of multipumping the BRAMs by themselves (“Pure Multi-Pumping”) to increase their apparent
number of ports, and then using these BRAMs to build LVT and XOR) multi-ported memories.
Using Pure Multi-Pumped BRAMs would reduce the number of memory banks inside LVT and
XOR memories, trading-off speed for a reduction in area.

Different Ratios of Read/Write Ports In all our work to date, we focus on unidirectional memories
with twice as many read ports than write ports. These configurations fit computational applications,
such as processor register files, where logic uses two operands to produce one result. We should
study memories with other read/write port ratios, inspired by different applications.

Stalling Designs We also focus, to date, on memories that do not stall: all reads and writes complete
in a single cycle. Lifting this restriction to trade-off on area and speed, for example by having reads
that may have to wait for an available memory bank, would also be interesting to investigate, and
would match some applications such as blocking L1 memory caches.
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