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ABSTRACT

Overlay processor architectures allow FPGAs to be progrednm
by non-experts using software, but prior designs have maieén
based on the architecture of their ASIC predecessors. srptper
we develop a new processor architecture that from the begjnn
accounts for and exploits the prede ned widths, depths, imax
mum operating frequencies, and other discretizations iamits|of
the underlying FPGA components. The result is Octavo, a ten-
pipeline-stage eight-threaded processor that operatée dilock
RAM maximum of 550MHz on a Stratix IV FPGA. Octavo is
highly parameterized, allowing us to explore trade-offdatapath
and memory width, memory depth, and number of supporteddhre
contexts.
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C.1.3 [Processor Architecturd: Other Architecture Styles-Adapt-
able ArchitecturesC.4 [Performance of Systemk Measurement
Techniques, Design Studies

General Terms
Design Performance Measurement
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1. INTRODUCTION

Making FPGAs easier to program for non-experts is a chadleng
of increasing interest and importance. One approach isablen
FPGAs to be programmed using software via overlay architest
for example conventional soft processors such as Alter&@QN
and Xilinx's Microblaze, or more aggressive designs suckais
vector processors [5, 18, 19]. Prior soft processor desigve
mainly inherited the architecture of their ASIC-based pbsors
with some optimization to better t the underlying FPGA. How
ever, FPGAs provide a much different substrate than raw tran
sistors, including lookup tables (LUTS), block RAMs (BRAMs
multipliers/DSPs, and various routing resources—all oiclnave
prede ned widths, depths, maximum operating frequencés]
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other discretizations and limits [1]. The existence of ehagifacts
and their characteristics suggests that an FPGA-centoioegsor
architecture, one that is built from the “ground-up” with GR
capabilities in mind, will differ from a conventional ar¢bcture

in compelling ways, mainly by using the FPGA resources more
ef ciently.

1.1 How do FPGAs Want to Compute?

In this work we ask the fundamental questidtiow do FPGAs
want to compute?A more exact (but less memorable) phrasing
of this question is:What processor architecture best ts the un-
derlying structures and discretizations of an FPGHls question
alone is still too broad for the scope of a single researclepao
we narrow our investigation by striving for the following ae for
a processor design.

1. To support a highly-threaded data-parallel programmingel,

similar to OpenCL.

To run at the maximum operating frequency allowed by the

particular FPGA resources used (e.g.: BRAMS).

To have high performance—i.e, not only high-frequendy bu

also reasonable instruction count and processor-cy@es-p

instruction.

. To never stall due to hazards (such as control or data depen
dences).

. To strive for simplicity and minimalism, rather than imite
all of the features of an existing processor design/ISA.

. To match underlying FPGA structures; for example, to dis-
cover the most effective width for data elements for both
datapaths and storage, as opposed to defaulting to the con-
ventional 32-bit width.

2.

3.

This paper describes the process and results of developing a
FPGA-based processor while striving for these goals.

1.2 Octavo

As a starting point, we show the simplest processor design we
could imagine in Figure 1, which is composed of at least one
multi-ported memory connected to an ALU, supplying its apeis
and control and receiving its results. We argue that sepalaiia
cache and register le storage is unnecessary: on an FPGA bot
are inevitably implemented using the same BRAMs. We eliteina
separate memory and registers, reducing the data anddtistru
memories and the register le into a single entity directiigleessed
by the instruction operand elds. For this reason our natltec-
ture is indeed not unlike the simple one pictured, having @nl
single logical storage component (similar to the scratdhpam-
ory proposed by Choat al.[5]). We demonstrate that this single
logical memory eliminates the need for immediate operamidks a



A 3. we present a design for a fast multiplier, consisting af tw
R half-pumped DSP blocks, which overcomes hardware timing
ALU and CAD limitations;
BRAMs | B

4. we present the design space of Octavo con gurations of
varying datapath and memory widths, memory depths, and
' number of pipeline stages.

2. EXPERIMENTAL FRAMEWORK

We evaluate Octavo and its components on Altera Stratix |V
FPGAs, although we expect proportionate results on oth&A-P
devices given suitable tuning of the pipeline.

Test Harness We place our circuits inside a synthesis test harness

Figure 1: An overview of the architecture of Octavo, compose
of a Memory (BRAMSs ) providing operands (A and B) and
instructions (I ) to an ALU which writes back its results (R) to
the same Memory.

load/store operations, but for now requires writing to riastion designed to both: (i) register all inputs and outputs to Engun
operands to synthesize indirect memory accesses. accurate timing analysis, and (i) to reduce the number ©f I/
Via the technique oelf-loop characterizationwhere we con-  pins to a minimum as larger circuits will not otherwise t ohet

nect a component's outputs to its inputs to take into accthmt  FpGA. The test harness also avoids any loss of circuitryazhbg
FPGA interconnect, we determine for memories and ALUs the ;o optimization. Shift registers expand single-pin irgutvhile

pipelining required to achieve the highest possible opegate- registered AND-reducers compact word-wide signals to glsin
guency. This leads us to an overall eight-stage processigrde output pin.

that operates at up to 550MHz on a Stratix IV FPGA, limited by Synthesis We use Altera's Quartus 10.1 to target a Stratix IV

the Ima?imurgloperahing f:jequency pf th? BRAMS' Tommeeé the  Ep4SE230F29C2 FPGA device of the highest available speed
goals of avoiding stalls and maximizing ef ciency, we mtiitea grade. For maximum portability, we implement the design in

thg prpcesszr S.uclh thatt an 'n;tg”it'zoriiri? a dlthertentgrm- generic Verilog-2001, with some LPMcomponents. We con g-
§|des mgact p't?]e Iné s e:gel [ 'd' ; lh ' d]l So tha I?fcni'are ure the synthesis process to favor speed over area and aihble
inaependent with no controf or data hazards or resu war relevant optimizations. To con rm the intrinsic perfornwmof a

between them. circuit without interference from optimizations—such agister

h We ne_m;ﬁtr?ur grocetss?r z|a_|rch|tectl%at?v&,_for rlllomlnally retiming, which can blur the distinction between the citauider
aving €ig reag contexts. Fowever, Dctavo IS realioe@ssor test and the test harness—we constrain a circuit to its ogn lo

family since it is highly parameterizable in terms of its datapaith a ical design partition and restrict its placement to withisiagle

mertnorty W'_I(_j:]h memor); d_eptth, an(|1| numbert of suppho;te_d thtread rectangular ared_pgicLockarea) containing only the circuit under
contexts. is parameterization allows us to search foirz test, excluding the test harness. Any test harness ciyaeitnains

con gurations that maximize resource utilization and &ldce- spatially and logically separate from the actual circuidemtest.

quency: Place and Route We con gure the place and route process to
1.3 Related Work exert maximal effort at tting with only two constraints: )(io

Many prior FPGA-based soft processors designs have been pro avoid using /O pin registers to prevent _a_lrti cially longtha that
posed, although these have typically inherited the archites would affect the clock freq.uen.cy, and (||).to set the tardeck
of their ASIC predecessors, and none have approached tble clo frequ_en(;:yf to I\‘;’ggM;éAI\VAVh'ChS'S _the maxmun; clock frecglgetzlcy
frequency achieved by Octavo. Examples include soft uogso Spect ed for VIS etting a target requency figher
sors [3, 17], multithreaded soft processors [6-8, 12, 1}, 45t than 550MHz does not improve results and could in fact degrad

VLIW processors [4, 10, 16], and soft vector processors§518]. them: for example, a slower derived clock would aim towards a
Jan Gray has studied the optimization of processors spaity c unnecessarily high target frequency, causing competftioriast

for FPGAs [9], where synthesis and technology mapping $rick routing paths. ] ] )
are applied to all aspects of the design of a processor fram th Frequency We report the unrestricted maximum operating fre-

instruction set to the architecture. quency Fmax ) by averaging the results of ten place and route runs,
. each starting with a different random seed for initial ptaeat. We

1.4 Contributions construct the average from the worst-cé&@x reports over the

In future work we plan to extend Octavo to support SIMD/vecto  fange of die temperatures between O to &5 a supply voltage
datapa’[hsy multicore interconnection, connection to aem of 900mV. Note that minimum clock pulse width limitations in
framework (for its abundance of thread and data parallg)ismd the BRAMs restrict the actual operating frequency to 550MHz
evaluation of full applications. In this paper we focus om th ~regardiess of actual propagation delay. RepoFigg in excess
architecture of a single Octavo core and provide the folgufour of this limit indicates timing slack available to the design
contributions: Area Area does not vary signi cantly between place and route

) ) runs, so we report the rst computed result. We measure asea a
1. we present the design process leading to Octavo, an 8-ihe count of Adaptive Lookup Tables (ALUTS) in use. We also
stage multithreaded processor family that operates at up to measure the area ef ciency as the percentage of ALUTS dgtinal

550MHz on a Stratix IV FPGA; use relative to the total number of ALUTs within the rectaagu

2. we demonstrate the utility ofelf-loop characterizatiorfor LogicLockarea which contains the circuit under test, including any
reasoning about the pipelining requirements of processor BRAMs or DSP Blocks.
components on FPGAs; 2Library of Parametrized Moduled.PM) is used to describe hard-

'An octavois a booklet made from a printed page folded three \(/;V(i;g that is too complex to infer automatically from behaaio

times to produce eight leaves (16 pages).



(a) 398MHz (b) 656MHz (d) 710MHz

Figure 2: Self-loop characterization of memories reveal tht
different numbers of pipeline stages absorb the propagatio
delays depending on their internal con gurations. Each of
(a)-(d) lists the theoretical maximum frequency of the degjn,
although the BRAM limit of 550MHz is the true limit.

3. STORAGE ARCHITECTURE

We begin our exploration of FPGA-centric architecture hyuf
ing on storage. Since modern mid/high-end FPGAs providd har
block RAMs (BRAMS) as part of the substrate, we assume tleat th
storage system for our architecture will be composed of BRAM
Since we are striving for a processor design of maximal feaegy,
we want to know how the inclusion of BRAMs will impact the
critical paths of our design. As already introduced, we uee t
method ofself-loop characterizationwhere we simply connect
the output of a component under study to its input, to iso{gte
operating frequency limitations and (ii) the impact of dutdfial
pipeline stages.

Figure 2 shows four 32-bit-wide memory con gurations: 256-
word memories using one BRAM with one (2(a)) and two (2(b))
pipeline stages, and 1024-word memories using four BRAMk wi
two (2(c)) and three (2(d)) pipeline stages. The result faira
gle BRAM (2(a)) is surprising: without additional pipelirg, the
Fmax reaches only 398MHz out of a maximum of 550MHz (lim-
ited by the minimum-clock-pulse-width restrictions of BRAM).
This delay stems from a lack of direct connection between BRA
and the surrounding logic fabric, forcing the use of glolmlting
resources. However, two pipeline stages (2(b)) increbsgs to
656MHz, and four pipeline stages (not shown) absorb nedirly a
delay and increase the achievabBlg.x up to 773MHz. Increasing
the memory depth to 1024 words (2(c)) requires 4 BRAMs, addi-
tional routing, and some multiplexing logic—and reduéggx
to 531MHz. Adding a third pipeline stage (2(d)) absorbs the
additional delay and increasBgax to 710MHz.

These results indicate that pipelining provides signi caming
slack for more complex memory designs. In Octavo we exploit
this slack to create a memory unit that collapses the usugl re
ister/cache/memory hierarchy into a single entity, mapd/al
as memory operations, and still operates at more than 550MHz
To avoid costly stalls on memory accesses, we organize in-ch
memory as a single scratchpad [5] such that access to ampaixte
memory must be managed explicitly by software. Furthermore
since an FPGA-based processor typically implements bathesa
and register les out of BRAMs, we pursue the simpli catiofi o
merging caches and register le into a single memory entitgl a

(c) 531MHz

address space. Hence Octavo can be viewed as either being (i

registerless, since there is only one memory entity foragfer or
(ii) registers-only, since there are no load or store irtditons, only
operations that directly address the single operand storag

4. INSTRUCTION SET ARCHITECTURE

The single-storage-unit architecture decided in the previsec-
tion led to Octavo's instruction set architecture (ISA) imavno

Table 1: Octavo's Instruction Word Format.
Size: 4 bits a bits a bits a bits
Field: | Opcode (OP)| Destination (D)| Source (A)| Source (B)

Table 2: Octavo's Instruction Set and Opcode Encoding.

Mnemonic | Opcode] Action
Logic Unit
XOR 0000 D=AXORB
AND 0001 D=AANDB
OR 0010 D=AORB
SRL 0011 D =A» 1 (zero ext.)
SRA 0100 D = A » 1 (sign ext.)
ADD 0101 D=A+B
SUB 0110 D=A-B
— 0111 (Unused, for expansion
Multiplier
MLO 1000 | D=A*B (Lower Word)
MHI 1001 | D=A*B (Upper Word)
Controller
JMP 1010 PC=D
JZE 1011 if(A==0)PC=D
JNZ 1100 if(Al=0)PC=D
JPO 1101 if A>=0)PC=D
JNE 1110 if(A<0)PC=D
— 1111 (Unused, for expansion

loads or stores: each operand can address any location in the
memory. Immediate values are implemented by placing them in
memory and addressing them. Subroutine calls and indireot-m

ory addressing are implemented by synthesizing code, iegalan

detail later in Section 9. Despite its frugality, we belighat the
Octavo ISA can emulate the MIPS ISA.

Table 1 describes Octavo's instruction word format. Ther fou
most-signi cant bits hold the opcode, and the remaining lgib-
code two source operands (A and B) and a destination operand
(D). The operands are all the same siaeafidress bits), and the
width of the operands dictates the amount of memory thatv@cta
can access. For example, a 36-bit instruction word has a 4-bi
opcode, three 10-bit operand elds, and 2 bits unused—atigw
for a memory space &f'° (1024) words. Table 2 shows Octavo's
instruction set and opcode encoding, with ten opcodes atkoc
to ALU instructions and the remaining six allocated to cohtr
instructions. The Logic Unit opcodes are chosen carefulyhsit
they can be broken into sub-opcodes to minimize decodingen t
ALU implementation.

5. MEMORY

Having decided the storage architecture and ISA for Octaeo,
next describe the design and implementation of Octavo's angm
unit. In particular, we describe the implementation of exa1/O,
and the composition of the different memory unit components

Jr/O Support Having only a single memory/storage and no sepa-

ate register le eliminates the notion of loads and storekich
normally implement memory-mapped I/O mechanisms. Sirge si
ni cant timing slack exists between the possible and acEuak

of FPGA BRAMSs, we can use this slack to memory-map 1/O
mechanisms without impacting our high clock frequency. \Wgpm
word-wide /O lines to the uppermost memory locations (gt

2 to 8 locations), making them appear like ordinary memony an
thus accessible like any operand. We interpose the I/O pports
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Figure 3: The overall connections of Octavo's memories andhie impl

ementation of the A and B Memories with integrated menory-

mapped word-wide 1/O ports. The RAM component is implementel using BRAMs. Note that both A/B read and writes complete in

two cycles, but overlap only for one cycle at RDO/WR1. The | Mmor

front of the RAM read and write ports: the 1/O read ports o

the RAM read if the read address is in the /O address range,
while the 1/O write ports pass through the write address aatd d

to the RAM. This architecture provides interesting podiies for
future multicore arrangements of Octavo: any instructian oow
perform up to two I/O reads and one I/O write simultaneoueslso,

an instruction can write its result directly to an 1/0 portlanother
instruction in another CPU can directly read it as an operand
Similarly, having I/O in instruction memory could enabletRC

to point to 1/0 to execute an external stream of instructisest
from another CPU (although we do not yet support this feature
Implementation Figure 3 shows the connections of Octavo's
memory units and details the construction of the A and B Mem-
ories. Each memory behaves as a simple dual-port (one read
and one write) memory, receiving a common write vaRig€the
ALU's result), but keeping separate read and 1/O ports. The |
Memory contains only BRAMs, while the A and B Memories

y has no I/0 and thus reads and writes in a single cycle.

ALUO: ALU1: ALU2 :

additionally integrate a number of memory-mapped wordewi®
ports (typically two or four). For the A and B memories, reads
writes take 2 cycles each but overlap for only 1Rid 0=W R1.

A write (Figure 3(b)) spends its rst cycle registering thédaess
and data to RAM, activating one of the I/O write port writeabie
lines based on the write address, and registering the waite tth

all /0 write ports. The data write to the RAM occurs during th
second cyclé. A read (Figure 3(c)) sends its address to the RAM
during the rst cycle and simultaneously selects an 1/0 rpad
based on the Least-Signi cant Bits (LSB) of the address. eBas
on the remaining Most-Signi cant Bits (MSB) of the addretize
second read cycle returns either the data from the RAM or ftem
selected 1/O read port. Our experiments showed that we cdn ad
up to about eight 1/0 ports per RAM read/write port pair beftire
average operating speed drops below 550MHz.

6. ALU

In this section we describe the development and design of Oc-
tavo's ALU components, including the Multiplier, the Addsub-
tractor, the Logic Unit, and their combination to form the AL

3We implemented the RAM using Quartus' auto-generated BRAM
write-forwarding circuitry, which immediately forwardhe write
data to the read port if the addresses match. This con gurati
yields a highefFmax  since there is a frequency cost to the Stratix
IV implementation of BRAMs set to return old data during si-
multaneous read/write of the same location [1]. Howevercesi
pipelining delays the write to a BRAM by one cycle, a coincitle
read will return the data currently contained in the BRAM: @@=l

of the data being written.

Figure 4: A detailed view of the Multiplier unit, which over-
comes the minimum clock pulse width limit of a single mul-
tiplier by operating two word-wide multipliers on alternat e
edges of a half-rate clockclk=2, with the correct double-word
product P selected by a single state bit driven by the system
clock clk.

Multiplier Unit  To support multiplication for a high-performance
soft processor it is necessary to target the available DSEkbl
multipliers. Although Stratix IV DSP blocks have a suf cigyr
low propagation delay to meet our 550MHz target frequertagy t
have a minimum-clock-pulse-width limitation (similar tdRB\Ms)
restricting their operating frequency to 480MHz for worétiths
beyond 18 bité.

Figure 4 shows the internal structure of Octavo's Multipbad
our solution to the clocking limitation: we use two word-wi®SP
block multipliers in alternation on a synchronous half-rate clock

4For widths 18 bits, it might be possible to implement the mul-
tiplier with a single DSP block, but current CAD issues prave
getting results consistent with the published speci aagi¢l] for
high-frequency implementations.

SWe implement each multiplier using an LPM instance gendrate
by the Quartus MegaWizard utility. Although the Altera DSP
blocks have input, intermediate, and output registers, sigder
can only specify the desired number of pipeline stages tbginb

at the input to the DSP block—hence we cannot specify to use
only the input and output registers to absorb the delay of the
entire DSP block. We bypass this limitation by instantigtin
one-stage-pipelined multiplier and feeding its outpub iexternal
registers. Later register-retiming optimizations evatijuplace
these external registers into the built-in output regsstérthe DSP
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Figure 5: Organization of Octavo's ALU, containing an

Adder/Subtractor (+-), a Logic Unit (&~ ), and a Multiplier
(x). The Logic Unit also multiplexes between its results and
those of the Adder/Subtractor.

(clk=2), such that we can perform two independent word-wide
multiplications, staggered but in parallel, and produce double-
word product every cycle. In detail, the operarisandB are
de-multiplexed into the two half-rate datapaths on alterraiges
of the half-rate clock. A single state bit driven by the sys@ock
(clk) selects the correct double-word produei @t each cycle.
Adder/Subtractor and Logic Unit We also carefully and thor-
oughly studied adder/subtractors and logic units whilédig Oc-
tavo, again using the method of self-loop characterizatastribed
in Section 3. We experimentally found that an unpipelineeb@2
ripple-carry adder/subtractor can reach 506MHz, and ttding
4 pipeline stages increasBgax up to 730MHz. An unpipelined
carry-select implementation only reaches 509MHz due tcathe
ditional multiplexing delay, but requires only two stagesréach
766MHz. Due to the 550MHz limitation imposed by BRAMs, a
simple two-stage ripple-carry adder reaching 600MHz icgrit.
The Logic Unit &|~) performs bit-wiseXOR AND OR SRL,
andSRAoperations (Table 2). It also acts as a pass-through for the
result of the Adder/Subtractor, which avoids an explicittiplexer
and allows us to separate and control the implementatiomef t
Adder/Subtractor from that of the Logic Unit. The Logic Unit
ef ciently maps to a single ALUT per word bit: 3 bits for the
opcode, plus one bit from the Adder/Subtractor result, amits
for the A and B operands of the bit-wise operations, totafirits
and naturally mapping to a single Stratix IV 6-LUT per outpiit
Combined ALU Design Figure 5 shows the block-level struc-
ture of the entire ALU, which combines the Multiplier, Adder
Subtractor, and Logic Unit. All operations occur simultansly
during each cycle, with the correct result selected by thpuwiu
multiplexer after four cycles of latency. We optimized eati-
component for speed, then added extra pipeline registéaance

b
‘_I
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OP |
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Figure 6: The Controller, which provides the Program Counte
(P C) value for each thread of execution and implements ow-
control. A Program Counter Memory (P CM ) holds the next
value of the P C for each thread of execution. Based on the
opcode OP) and the fetched value of operandh (if applicable),
the controller may update the P C of a thread with the target
address stored in the destination operand .

thread of execution. We implement tReCM using one MLAE
instead of a BRAM, given a typically narrow PC (< 20 bits) and
a relatively small number of threads (8 to 16)—this also fiéfp-
prove the resource-diversity of Octavo and will ease itéicappon

in future multicore designs. A simple incrementer and tegigair
perform round-robin reads of tfeCM , selecting each thread in
turn. At each cycle, the curre®C of a thread is incremented by
one and stored back into tieCM . The current C is either the
next consecutive value from tieCM , or a new jump destination
address from th® instruction operand.

The decision to output a ne®C in the case of a jump instruc-
tion is based on the instruction opco@® and the fetched value
of operandA. A two-cycle pipeline determines if the value Afis
zero Q?) or positive (+?), and based on the opco@P decides
whether a jump in ow-control happensliMP ?)—i.e., outputs
the new value of the PC from, instead of the next consecutive
value from theP CM . A Controller supporting 10-bit PCs for 8
threads can reach an average speed of 618MHz, though the MLAB
implementing the PCM limit&max to 600MHz.

8. COMPLETE OCTAVO HARDWARE

In this section we combine the units described in the previou
three sections to build the complete Octavo datapath showigi
ure 7, composed of an instruction Memoly,(two data Memories

the path lengths. We use the Logic Unit as a pipeline stage and (A andB), an ALU, and a ControllerGTL).

multiplexer to reduce the delay and width of the nal ALU résu
multiplexer. The combined ALU runs at an average of 595MHz fo
a width of 36 bits.

7. CONTROLLER

Figure 6 shows the design of the Octavo Controller. The Con-
troller provides the current Program CountBrQ@) value for each
thread of execution and implements ow-control. A Program
Counter Memory R CM ) holds the next value of the PC for each

block, yielding a two-stage pipelined multiplier with orihput and
output registers.

We begin by describing the Octavo pipeline from left to right
Stage 0, Memory is indexed by the currer C and provides
the current instruction containing operand addre€3esA, and
B, and the opcod®©P. Stages 1-3 contain only registers and
perform no computation. Their purpose is to separate the BRA
of Memory| from those of Memorie#=B by a suitable number
of stages to maintain a 550MHz clock: as shown by the self-loo
characterization in Section 3, we must separate groups &f\BR
with at least two stages—having only a single extra stageden
thel andA=B memories would yield afrnax of only 495MHz
for a 36-bit, 1024-word Octavo instance. We insert thregeda

5Memory Logic Array Blocks (MLABs) are small (e.g., 32 bits
wide by 20 words deep) memories found in Altera FPGAs.
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Figure 7: The complete Octavo system: an instruction Memoryl ), two data Memories (A andB), an ALU, and a Controller (CTL).

to avoid having an odd total number of stages. Across stages 4
and 5, theA andB memories provide the source operands (of the-
same name). The ALU spans stages 6-9 and provides the re
R which is written back at addre$> to both MemoriesA andB
(across stages 4 and 5 again), as well as Menhofgt stage 0).

Sltint ¢ ;
3l int *xb = &c;

The Controller CTL) spans stages 6 and 7 and writes the new

int a

42
88,;

2
8

[T
oo o
O 0N

a =xb; ri, a

P C back to Memoryl in stage 0. The controller contains tReC
memory for all threads, and for each thread decides whethter (
continue with the next consecutiveC value, or (ii) to branch to
the new target addre€s.

There are three main hazards/loops in the Octavo pipelihe. T
rst hazard exists in the control loop that spans stages frauigh

la r2, c

r3, 0(r2)
r3, 0(rl)

lw
sw

OCoO~NOUDSWNE

(a) Ccode (b) Optimized MIPS code

the controller CT L )—hence Octavo requires a minimum of eight
independent threads to hide this dependence. The secoadiha
is the potential eight-cycle Read-After-Write (RAW) datazhard
between consecutive instructions from the same threadm fro 4
operand reads in stages 4-5, through the ALU stages 6-9 hand
write-back of the resulR through stages 4-5 again (recall that
writing memoriesA=B also takes two stages)—this dependenc%

is also hidden by eight threads. The third hazard also begitte

8| T:
s

operand reads in stages 4-5 and goes through the ALU in stage

x o

8

oo o N
o oo N

0 O

8

or
nop
add a,

or
nop
add a,

T, T, b T, T, b

O~NO S WN P

Z, 0 T: Z,cC

6-9, but writes-back the resuR to Memory| for the purpose of
the instruction synthesis introduced in Section 4 and desdrin

detail in the next section. This loop spans ten stages ahdigsrtot
covered by only eight threads. Rather than increase thi@adxts
beyond eight to tolerate this loop, we instead requidekay slot
instruction between the synthesis of an instruction andsés

9. OCTAVO SOFTWARE

As described in Section 4, the Octavo ISA supports only tegis
direct addressing, since all operands are simple memongssies—
hence the implementation of displacement, indirect, oexed
addressing requires two instructions: a rst instructieads the
memory location containing the indirect address or theldisp
ment/index, and stores it into the source or destinatiorraoue
of a second instruction that performs the actual memory sscce
using the modi ed operand address. The remainder of thissec
provides examples of indirection implemented using thea@xt
ISA, including pointer dereference, arrays, and subreutalls.

9.1 Pointer Dereference

(c) Octavo code (pre-execution) (d) Octavo code (post-execution)

Figure 8: Pointer dereference example.

a pair of address loads (we use the comnian assembler macro
for brevity) followed by a displacement addressing loatéspair.
Since the value o is known at compile time, we assume that the
compiler optimizes-away the dereference and uses the sxldfe
directly.

In the Octavo ISA we synthesize indirect addressing at imie-t
by placing the address storedbrinto a source operand of a later
instruction that stores inta the contentf the address taken from
b. Without load/store operations, we instead useA&D with
“register zero” as one of the operands. Figure 8(c) showsnitial
conditions of the Octavo code and begins with a memory lonati
de ned as “register zero”4) and others containing the same
initialized variables 4, b, andc) as the C code. Line 6 contains an
instruction thaDRs a target instructiof (line 8) with the contents
of b(line 3)—note thaT 's second source operand initially contains
zero. ANOPor other independent instruction must exist between
the generating instruction and its target due to the 1-cRA®YV

The C code in Figure 8(a) performs an indirect memory access hazard when writing to Memory | (Section 8) if executing less

by dereferencing the pointdy and storing the nal value into
locationa. In the MIPS ISA (Figure 8(b)), this code translates into

than 10 threads. Figure 8(d) shows the result of executiom fr
line 6 onwards, that replaces the zero source operafid wvith
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int A[] ={ 42, ...};| 1|A : 42 1
int B[] = { 23, ...};| 2|A": ... 2
int C[] = {88, ...}; 3/B: 23 3
4B': ... 4
*A = xB + *«C; 5/C : 88 5
A++; 6|C": 6
B++; 7 7
C++; 8lla r1, A 8
9la r2, B 9
10/ la r3, C 10
11 11
12| lw r5, 0(r2) 12
13| Iw ré, 0(r3) 13
14| add r4, r5, r6
15| sw r4d, 0(rl)
16| addi r1, r1, 1
17| addi r2, r2, 1
18| addi r3, r3, 1
(a)Ccode (b) MIPS code
A 42 1lA : 111
AL 2(A": ...
B : 23 3B : 23
B': ... 4 B': ...
C : 88 5|C : 88
C': ... 6|C": ...
| 01, 1,1 701 01, 1,1
8
T : add A, B, C 9|T : addA, B', C
add T, T, | 10 add T, T, |

(c) Octavo code (pre-execution) (d) Octavo code (post-execution)

Figure 9: Array access example.

the contents ob, and later executeB with the modi ed operand,
storing the contents of into a. If the compiler knows the value
of the pointerb, it can perform these steps at compile-time and
synthesize the nal instruction—avoiding the run-time dwead.

To traverse a linked list or any other pointer-based stractthe
target instructiorm instead can update the pointeitself.

9.2 Iterating over Arrays

Despite the apparent inef ciency of needing to synthesizeec
to perform indirect memory accesses, manipulating the aomksr
of an instruction can also have advantages. For exampleC the
code in Figure 9(a) describes the core of a loop summing two
arrays. Figure 9(b) shows a straightforward translatioMt®S
assembly: the same letters as in the code denote consecutive
array locations. After a 3-instruction preamble to load dney
addresses into registerg, r2, andr 3, the next four instructions
(lines 12-15) load th& and C array element values, sum them,
and store them back into the correspondikglement. The last
three instructions increment the array pointers.

The equivalent Octavo assembly code in Figure 9(c) workisen t
same way, but using synthesized code: after directly peifay
the array element sum dt on line 9, we add 1 to each address
operand using a word-wide vallieon line 7. This increment value
| contains the increment of each array pointer, each shiftatign
with the corresponding address eld, and a zero value atigmi¢h
the opcode eld. Adding to T yields the updated code for the
next loop iteration in Figure 9(d). Compared to the MIPS civde

Z: 0 1/Z: 0
RET1: jmp X, 0, O 2|RET1: jmp X, 0, O
RET2: jmp R, 0, O 3|RET2: jmp R, 0, O
4
sub: 5| sub:
6
E: jmp X, 0, O 7/ E: jmpR, 0, 0
8
caller: 9| caller:
10
add E, Z, RET? 11 add E, Z, RET2
jmp sub, 0, 0| 12 jmp sub, 0, O
R: 13| R:

(a) pre-execution (b) post-execution

Figure 10: Call/return example, in Octavo code.

Figure 9(b), Octavo requires only two instructions instebseven
to compute the same loop body.

Synthesized code does however increase the size of loomprea
bles. Octavo's loop preamble overhead could become signic
with many short nested loops, but compiler optimizationshsu
as loop coalescing would reduce it. Similarly, inductiomiable
elimination would reduce the amount of synthesized codeireq
for more complex array access patterns.

9.3 Synthesizing Subroutine Calls

Without call stack hardware support, Octavo must syntleesiz
code to implement subroutine linkage using a method prelyou
described by Knuth [11]. While somewhat awkward, having to
synthesize CALL and RET instructions saves two scarce agsod
for other uses and enables conditional calls and returns exina
cost.

Figure 10(a) shows a synthesized CALL and RET pair example.
Lines 2 and 3 contain return jumBET 1 andRET 2 that act as
the “RET” for speci ¢ “CALLs” to sub (lines 5-7). These return
jumps get placed by callers at the exit pdindbf sub, that currently
contains a copy dRET 1 placed there by a previous caller. Before
jumping to sub at line 12, thecaller will change sub's return
jump target fromX to R, the return point in thealler at line 13.
Figure 10(b) shows the updated code after line 11 executtsthe
exit pointE updated to return t®. Using JNZ, JZE, JPO, or INE
instead of JMP at line 3 implements a conditional subroutitern.
Doing the same at line 12 implements a conditional subrewgail.

This subroutine linkage scheme does not allow re-entrancy:
threads cannot intersect in the call graph, including witgntselves
(i.e., recursive calls must be converted to iterative aneshe
compiler must create private copies of the subroutine ih sases.

10. SPEED AND AREA

In this section we examine many varying instances of Octavo
as instantiated on a Stratix NEP4SE230F29C2 device. In
particular we measure maximum operating frequeRGyf ), area
usage, and area density over a range of con gurations, ngryi
word width, memory depth, and number of pipeline stages. We
perform these experiments to con rm that Octavo achieves ou
stated goals for a processor design (Section 1.1) over arardge
of con gurations.

10.1 Maximum Operating Frequency

Our rst experiments address whether Octavo's highux  will
hold for non-trivial and unconventional word widths andrigesing
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memory depths. We nd that, over a range of word widths from 8
to 72 bits,Fmax remains high and degrades smoothly.

Figure 11 shows the maximum operating frequefGyx of
Octavo for word widths ranging from 8 to 72 bits, and for Octav
instances with 8 to 16 pipeline stages. The dashed lineatesdhe
550MHz Frax  upper limit imposed by the BRAMs. As a rough
comparison we plot the 32-bit Niosll/f soft processor, nepd
to be 230MHz for our target FPGA [2]. For this experiment we
limited memory depth to a maximum of 256 words so that each
memory ts into a single BRAM, avoiding any effect dfmax
from memory size and layout.

For all pipeline depthsFmax degrades slowly from about
625MHz down to 565MHz when varying word width from 8 to
36 bits. For 12 to 16 pipeline stagEsax decreases only 28%
over a 9x increase in width from 8 to 72 bits, and still reaches
just over 450MHz at 72 bits width. Word widths beyond 36 bits
exceed the native capacity of the DSP blocks, requiringtiahdil
adders (implemented with ALUTS) to tie together multiple S
blocks into wider multipliers. Adding more pipeline stageshe
Multiplier absorbs the delay of these extra adders but asss

total pipeline depth. Increasing pipeline depth by 4 stageso
12 absorbs the delay of these extra adders.

Unfortunately a CAD anomaly occurs for widths between 38
and 54 bits (inclusive), where Quartus 10.1 cannot fully rtrep
Multiplier onto the DSP blocks, forcing the use of yet moreles
implemented in FPGA logic. Increasing the pipelining to fagss,
again by adding stages in the Multiplier, overcomes the CAD
anomaly. Increasing the pipelining to 16 stages has no durth
effect on Octavo, whose critical path lies inside the Muikip
The CAD anomaly affects Octavo in two ways: the affected word
widths must pipeline the Multiplier further than normallgeessary
to overcome the extra adder delay, and also show a disconishu
higherFmax than the wider, unaffected word-widths (56 to 72 bits),
regardless of the number of pipeline stages. Unfortunately
CAD anomaly hides the actual behavior of Octavo at the istare
transition point at widths of 36 to 38 bhits, where the nativdtivof
both BRAMs and DSP blocks is exceeded.

Figure 12 shows the maximum operating frequeri€y.f ) for
a16-stageOctavo design over addressable memory depths ranging
from 2 to 32,768 words and plotted for word widths from 8 to 72
bits. We also mark the 550MHz actughax upper limitimposed
by the BRAMs. We use 16 stages instead of 8 to avoid the drop in
performance caused by the CAD anomaly.

The previously observed discontinudbigax drop in Figure 11
for Octavo instances with widths of 56 to 72 bits is visibleehe
in the cluster of dashed and dotted lines lying below 500Métz f
depths of 256 to 4096 words. Similarly, the cluster of dadivezs
above 500MHz spanning 256 to 4096 words depth contains the
word widths (38 to 54 bits) affected by the CAD anomaly.

A memory requires twice as many BRAMs to implement widths
exceeding the native BRAM maximum width of 36 bits. Unfortu-
nately, the CAD anomaly masks the initial effect®rRax of dou-
bling the number of BRAMs for the same depth when exceeding a
word width of 36 bits.

For depths up to 256 words, which all t in a single BRAM,
and widths below where the CAD anomaly manifests (8 to 3§,bits
Fmax decreases from 692MHz down to 575MHz, a 16.9% decrease
over a 4.5x increase in word width and 128x increase in memory
depth (2 to 256 words). For depths greater than 256 wordse if w
take as example the narrowest width (50 bits) which can addre
up to 32,768 wordsirmax decreases 49.8% over a 64x increase in
depth (512 to 32,768 words). The decrease changes littledis w
increases: 42.1% at 72 bhits width over the same memory depths
Overall, an increase in memory depth affeBigsx much more
than an increase in width, with the effect becoming notiteeghst
1024 words of depth.

Summary We summarize with two main observations: (i) widths
> 36 bits require additional logic and pipelining, and (iilCAD
anomaly forces longer pipelines and hides the actual ctiovésss
than 14 pipeline stages. We also found that at least 12 pipeli
stages are necessary for widths greater than 56 bits, madelo
CAD anomaly, and that memory depth has a greater effeEtan
than word width, becoming signi cant beyond 1024 words.

10.2 Area Usage

Our next experiments tests if Octavo's area scales prdigtica
as word width and memory depth increase. Figure 13 shows the
area used in ALUTSs, excluding BRAMs and DSP blocks, over
word widths ranging from 8 to 72 bits, for aBrstage Octavo
design. Where possible, for each width, we plot multiplengsi
each representing an addressable memory depth rangingftom
32,768 words. We also mark the reported 1,110 ALUT area usage
of the 32-bit Niosll/f soft processor on the same FPGA farjiily
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(a) 1024 Words

(b) 4096 Words

Figure 15: Physical layout of an 8-stage, 72-bit wide Octavo
instance with (a) 1024 and (b) 4096 memory words. The large
shaded rectangular area contains only the ALUTs used by
Octavo, any outside ALUTs belong to a test harness and do not
count; the darker columns contain the BRAMs implementing
the Memory; the pale columns contain DSP blocks implement-
ing the Multiplier and are part of Octavo despite protruding
below the rectangular area in one instance; the remaining sl
blocks denote groups of ALUTs, with shade indicating the
relative number of ALUTSs used in each group.

density, measured as the percentage of ALUTs in actual ub@&wi
the rectangular area containing &rstageOctavo instance, over
word widths ranging from 8 to 72 bits and plotted for each addr
able memory depth ranging from 2 to 32,768 words. BRAMs and
DSP block do not count towards ALUT count. Word width has no
clear effect, but density drops sharply for depths excepdib4
words due to the BRAM columns needing a larger rectanguéa ar
to contain them than would compactly contain the processgic|
implemented using ALUTS.

Figures 15(a) and 15(b) illustrate the effect of the layofit o
BRAMSs on the density. Each show an 8-stage, 72-bit wide @ctav
instance with a memory of 1024 and 4096 words respectiveig. T
large colored rectangular area contains only the ALUTs used
Octavo. Any outside ALUTs belong to a test harness and are
ignored. The columns contain the DSP blocks which implement
the Multiplier, and the BRAMs for the Memory. The remaining
small block denote groups of ALUTs, with shade indicating th
relative number of ALUTS in use in each group. When increasin
from a 1024 to 4096 word memory, the number of ALUTs used to

For small memories having less than 256 words, the area usedimplement Octavo increases only 15.3%, but the densitysdirom

varies roughly linearly, increasing 11.4x in area over arfbxréase

in width. The CAD anomaly causes two small discontinuous
increases in the ALUT usage: +24.2% while increasing from 36
to 38 bits width, and +16.5% from 54 to 56 bits, both cases for a
memory depth of 256 words. Increasing memory depth has littl
effect on the amount of logic used: at a width of 72 bits, theaar
increases from 2478 to 3339 ALUTSs (+37.5%) when increasieg t
memory depth from 256 to 32,768 (128x).

Summary We found that area varies roughly linearly with word
width, varies little with memory depth, and is also affecsdthe
CAD anomaly.

10.3 Density

Our nal experiments seek to nd if some Octavo con guraten
are “denser” than others, leaving fewer ALUTs, BRAMs, or DSP
blocks unused within their rectangular area. Figure 14 shihe

65% to 26% due to the unused ALUTSs enclosed by the required
number of BRAMSs.

For memories deeper than 1024 words, we could recover the
wasted ALUTs by allowing non-Octavo circuitry to be placed
within its enclosing rectangular area, but this choice nmeyatively
affect Fnax due to increased routing congestion, and prevents
the FPGA CAD tools from placing and routing multiple Octavo
instances (or other modules) in parallel, lengthening tasigh
cycle. Further work may lead us to create vector/SIMD varsio
of Octavo to reclaim unused resources.

Summary Our experiments con rm our original intuition that
there exists a “sweet spot”—where the number of BRAMs used
ts most effectively within the area of the CPU—at approxielst
1024 words of memory depth, regardless of word width.



11. CONCLUSIONS

In this paper we presented initial work to answer the questio
“How do FPGAs want to compute?”, resulting in the Octavo
FPGA-centric soft-processor architecture family. Octeve ten-
pipeline-stage, eight-threaded processor that opertties BRAM
maximum of 550MHz on a Stratix IV FPGA, is highly parameteriz
able, and behaves well under a wide range of datapath and rpemo
width, memory depth, and number of supported thread castext

Fmax decreases only 28% (625 to 450MHz) over a 9x in-
crease in word width (8 to 72 bits);

Fmax decreases 49.8% over a 64x increase in memory depth

(512 to 32k words), and almost independently of word width;
the amount of logic used is almost unaffected by memory

depth: at a width of 72 bits, the usage increases from 2478 to

3339 ALUTSs (+37.5%) when increasing the memory depth
from 256 to 32,768 (128x);

the amount of logic used varies linearly with word width,
increasing 11.4x over a 9x increase in width (8 to 72 bits);
and the area density is unaffected by word width, but drops

sharply for memory depths exceeding 1024 words due to the

BRAM columns needing a larger containing rectangular area
than that required for the processor logic.

12. FURTHER WORK

Our FPGA-centric architecture approach led us to Octavast f
but unconventional architecture. We will next attempt tshpu
more standard processor features back into Octavo to determ
whether a highFmax can be maintained with more conventional
architecture support. For example, we will attempt to pievi
some support for indirect memory access and possibly editain
the need for code synthesis and non-re-entrant code. Walgdll
investigate the possibility of allowing fewer threads thgpeline
stages via cheap methods for hazard detection and threadudeh
ing [13]. Beyond a single Octavo datapath, other importaenaes
of research include scaling Octavo to have multiple datepaith
vector/SIMD support, and to have interconnect, commuiunat
and synchronization between multiple cores. We will alsakwo
towards connecting to a data parallel and highly-threadgt-h
level programming model such as OpenCL. Finally, we hope to
explore the applicability of Octavo and its descendantsttero
FPGA devices.
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