
Multi-Ported Memories for FPGAs via XOR

Charles Eric LaForest, Ming G. Liu, Emma Rae Rapati, and J. Gregory Steffan
Department of Electrical and Computer Engineering

University of Toronto, Canada
{laforest,steffan}@eecg.toronto.edu, {emma.rapati,minggang.liu}@utoronto.ca

ABSTRACT

Multi-ported memories are challenging to implement with FPGAs
since the block RAMs included in the fabric typically have only
two ports. Any design that requires a memory with more than two
ports must therefore be built out of logic elements or by combining
multiple block RAMs. The recently-proposed Live Value Table
(LVT) [8] design provides a significant operating frequency im-
provement over conventional approaches. In this paper we present
an alternative approach based on the XOR operation that provides
multi-ported memories that use far less logic but more block RAMs
than LVT designs, and are often smaller and faster for memories
that are more than 512 entries deep. We show that (i) both designs
can exploit multipumping to trade speed for area savings, (ii) that
multipumped XOR designs are significantly smaller but moderately
slower than their LVT counterparts, and (iii) that both the LVT and
XOR approaches are valuable and useful in different situations, de-
pending on the constraints and resource utilization of the enclosing
design.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Style—Shared Memory

General Terms

Design Performance Measurement

Keywords

FPGA, memory, multi-port, parallel, XOR

1. INTRODUCTION
FPGAs are increasingly used to implement complex systems-on-

chip that require frequent communication, sharing, queuing, and
synchronization among distributed functional units and compute
nodes. These high-contention storage mechanisms are often im-
plemented using multi-ported memories that allow multiple reads
and writes to occur simultaneously. A good example is the register
file of an FPGA-based soft processor, for which even a simple in-
order RISC processor requires one write port and two read ports,
while processors that issue instructions more aggressively require

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

even more ports. The challenge is that constructing a multi-ported
memory out of FPGA logic elements is inefficient [8]. Further-
more, FPGA substrates typically provide block RAMs (BRAMs)
that provide only two ports, and hence memories with more than
two ports must be “soft”, i.e., constructed using FPGA logic and/or
hard BRAMs. However, the ability to construct efficient soft multi-
ported memories is important as it frees FPGA vendors from having
to include hard BRAMs with more than two ports in their fabrics.

1.1 Prior Approaches
Implementations for FPGA-based multi-ported memories have

only recently been formally described and studied [8]; we summa-
rize the conventional approaches here. A straightforward approach
is to construct a multi-ported memory using logic elements—for
example Altera’s adaptive logic modules (ALMs)—enjoying flex-
ibility but at a heavy cost in area and performance. Replication

enables constructing a memory with any number of external read
ports, but can support only a single external write port that must
be connected to one of the two ports of each replicated BRAM.
Banking divides the read and write ports across multiple separate
BRAMs, supporting concurrent read and writes but fragmenting
and isolating the data across banks. The Live Value Table (LVT)
approach [8] augments a banked approach with a table that uses
output multiplexers to steer reads to the most recently-updated bank
for each memory address. The LVT approach improves signif-
icantly on the area and speed of comparable designs built using
ALMs, although the internal LVT table itself scales somewhat
poorly, can consume a lot of area, and usually becomes the critical
path. Finally, Multipumping can be applied to any memory design
to multiply its read and write ports by operating that memory at a
multiple of the external clock frequency. Multipumping reduces
the area required for a memory with a certain number of ports, but
also reduces its maximum achievable external operating frequency.

1.2 An XOR-Based Approach
The XOR operation (⊕) has interesting and useful properties,

particularly that A⊕B⊕B = A. For example, XOR can be used in
RAID systems [11] to implement parity and provide data recovery
capability should one hard-drive of an array of drives fail. In this
paper we present an alternative to the LVT approach that is based
on XOR. Similar to the LVT approach, the XOR approach internally
uses banking and replication. However, the XOR design avoids
the need for a Live Value Table to direct reads and also avoids the
corresponding output multiplexing, instead allowing the logic of
each read port to consist solely of an XOR of values read from a
bank of BRAMs. We demonstrate that XOR designs consume far
fewer ALMs but more BRAMs than corresponding LVT designs,
and that XOR designs can also be faster and consume less total
area than LVT designs for some configurations.

LVTR
1Addr

R
0Addr

2w2r

W
1Addr

LVT

(ALMs)W
0Addr

1Addr

W
R
0D

BRAM

0

W
0Data

R
0Data

BRAM

1

BRAM

R
1Data

BRAM

0

1

W
1Data

BRAM

Figure 1: A 2W/2R Live Value Table (LV T) design.

1.3 Contributions
This paper makes the following contributions:

1. we present a novel design for implementing multi-ported
memories based on the XOR operation;

2. we describe methods to improve the speed of the original
LVT design, at an area cost for some designs but an area
savings for others;

3. we thoroughly evaluate and compare XOR and improved
LVT approaches on an Altera Stratix IV device across a
broad range of depths and numbers of ports, as well as
multiple factors of multipumping;

4. we demonstrate that the XOR and LVT designs have signifi-
cant resource diversity, as XOR designs use far fewer ALMs
but more BRAMs than LVT designs;

5. we show that both XOR and LVT designs can be the smallest
or fastest option, depending on the depth and number of ports
of the desired memory.

2. THE LIVE VALUE TABLE DESIGN
The live value table (LVT) multi-ported memory design allows

the implementation of a memory with more than one write port to
be based on BRAMs, as opposed to being limited to building such
a memory solely from logic elements. The basic idea of an LVT
design is to augment a banked design with the ability to connect
each read port to the most-recently written bank for a given memory
location. In this section we briefly summarize the construction
and operation of the LVT design; a full treatment is provided by
LaForest and Steffan [8].

As a simple example, Figure 1 shows a two-write-two-read
(2W/2R) LVT-based memory. Each write port requires its own
bank of BRAMs, and each bank requires two BRAMs to provide

.

.

.

M
0

M
1

M
m−1

.

.

.

...
...

...
...

R
n−1

R
1

R
0

...
...

W
m−1

W
1

W
0

.

.

.

...
...

...

Write
Addr.

Read
Addr.

1W/nR

1W/nR

1W/nR

mW/nR

LVT

mW/nR

Figure 2: A generalized mW/nR memory implemented using a

Live Value Table (LV T)

for the two read ports. At each read port is a multiplexer that is
driven by the LVT itself, which selects the most-recently written
(i.e., live) bank for the read-address. The LVT itself is composed of
logic elements (e.g., Altera’s ALMs), and itself is a 2W/2R mem-
ory, but is only as wide as the log-base-2 of the number of write
ports (typically 1-3 bits wide)—and hence can be implemented
fairly efficiently.

Figure 2 shows a generalized LVT design. Again, there is a bank
of BRAMs per every write port, and each bank is itself a 1W/nR
memory composed BRAMs, for a memory with n external read
ports. The BRAMs in a bank are arranged using replication, where
the single write port writes to every BRAM, and the second port for
each BRAM is used to provide a read port to the output multiplex-
ers. Hence an LVT design requires a total of m·n BRAMs, plus
the logic required to implement the LVT and the multiplexers.

Summary For LVT-based memories, the LVT itself and the output
multiplexers together (i) constitute the critical path, and (ii) can
require a significant number of logic elements to implement. In
the next section we pursue an alternative design that avoids both
of these challenges. Later in Section 5 we describe and quantify
the ways that we improve on the original LVT design and its
multipumped versions to significantly increase its frequency at a
small cost in area for shallow designs.

3. AN XOR-BASED DESIGN
In this section we venture to overcome the drawbacks of the LVT

design by avoiding the narrow but multi-ported LVT itself required
to control the output multiplexers. As introduced earlier, the goal
of our design is for each read port to require only the computation
of the XOR of values read from BRAMs. In this section we review
some of the properties of XOR, build towards a working XOR-based
multi-ported memory design, and then discuss how the XOR-based
design can be multipumped to trade speed to save area.

W
0

A

W
0

A OLD1

OLD2

=A OLD1

OLD1

BRAM BRAM

R
0

W

OLD2

B

OLD1

=A

W
1

OLD1

BRAM BRAM

B OLD2
BRAM

Figure 3: A 2W/1R memory implemented using XOR, with

example data values. Note that only data wires are shown,

not address wires. W0 stores the value A XOR’ed with the

old contents of the other bank (OLD1). Similarly, W1 stores

the value B XOR’ed with the old contents of the other bank

(OLD2). Reading the location containing A computes (A ⊕

OLD1) ⊕ OLD1 which returns A.

3.1 XOR Properties
The bitwise XOR operation is commutative, associative, and has

the following properties1:

• A ⊕ 0 = A
• B ⊕ B = 0
• A ⊕ B ⊕ B = A

The third property, which follows from the first two, implies that
we can XOR two values A and B together, and recover A by XORing
the result with B. We can exploit this property to allow the XOR
of two instances of a location to return the most recent version.
For example, suppose location1 contains some OLD value, and
then we save a new value A in location2 by XORing it with the
OLD value, i.e., by storing A ⊕ OLD in location2; explicitly:
location2 = A⊕location1 = A⊕OLD. We can then recover A,
i.e., read the most recently-written value, by simply returning the
XOR of the two locations, without having to select between them;
explicitly: output = location1 ⊕ location2 = (A ⊕ OLD) ⊕
OLD = A. While at first this all seems unnecessary, the key is that
it allows two write ports to write two separate BRAMS (or banks
of BRAMs) simultaneously (like the LVT design), while read ports
need only XOR BRAM locations to return a value (unlike the LVT
design which requires output multiplexing).

3.2 Simple XOR Designs
We next build on this basic property of XOR to construct a

simple 2W/1R memory out of dual-ported BRAMs, as illustrated
in Figure 3. Note that the figure shows only data wires and values,
not address wires or values. In the design, each write port has its
own bank of two BRAMs, and writes for each are copied to both
BRAMs—i.e., corresponding locations in all of the BRAMs in a
bank always have the same value. When the write port W0 stores
the value A to the upper locations (in grey), it first XORs A with the
old value of the same location in W1’s bank (OLD1). Similarly,

1Another interesting use of XOR is to swap the contents of two
memory locations A and B without the use of a temporary location
in three steps: A = A ⊕ B; B = A ⊕ B; A = A ⊕ B.

W
0Addr

R

W
0Data

R

D AD A

BRAM BRAM

R
0Addr

=?

D A

D A

D A

D A

…

R
0Data

0

1

… …

…

Figure 4: Details of the address wires, registers, and forward-

ing circuitry used in the XOR design, not shown in other figures

for simplicity.

when the write port W1 stores the value B to the lower locations
(also in grey), it first XORs B with the old value of the same location
in W0’s bank (OLD2).

For the read port, recall that our main design goal is for the
read port circuitry to consist solely of an XOR of BRAM outputs,
which is achieved. Reading the upper location computes the XOR of
both versions of the upper location (from both the upper and lower
banks), which results in isolating the value most recently stored to
that location by computing (A⊕OLD1) ⊕OLD1, which returns
A.

A challenge for the XOR design is that each write requires
reading as well, since we must store the write value XOR the old
value of that location from the other bank. This increases the
number of BRAMs required to implement the design, since extra
read ports must be used internally to service writes. This also
potentially complicates the design since writes will effectively take
two cycles to complete. However, we can keep the XOR design
black-box-compatible with previous designs and give the illusion
that writes effectively take only one cycle with two additions to the
design, as illustrated in Figure 4. First, we register the write port
addresses and values. Second, we instantiate forwarding circuitry
(via Quartus library) that allows the write data value to flow directly
to the read data wires in the event that we read a location in the
cycle directly after we write that same location. For simplicity these
extra registers and forwarding logic are not shown in figures other
than Figure 4.

As shown in Figure 5, we next build a slightly more complex
memory by adding another read port, constructing a 2W/2R mem-
ory. This design functions similarly to the 2W/1R design, except
that another column of BRAMs has been added to provide values
for the additional read port.

3.3 A Generalized XOR Design
To summarize the XOR design, each time we write the contents

of a given location to a particular memory bank, we XOR the new
data with the old contents of the same location from all other banks.
To read a location we calculate the XOR of the values for that
location across all banks, which recovers the latest value written.

In Figure 6 we present a generalized mW/nR XOR design. Each
write port has its own bank (row) of BRAMs. To write a value to a
location, that value is firstXORed with all of the values for that same
location from all other banks, and the result of that XOR is then
distributed and written to all BRAMs in the current bank. Hence

W
0

BRAM BRAMBRAM

R
0

W
1

BRAM BRAMBRAM

R
1

Figure 5: A 2W/2R memory implemented using XOR. Com-

pared with the 2W/1R memory in Figure 3, an additional

column of BRAMs is added to supply values for the additional

read port.

column

feeds R

column

feeds R

m 1 wide column

feeds write port

XOR f th b k

W
0

feeds Rn 1 feeds R0XORs for other banks

BRAM BRAMBRAM BRAM… …
Bank0

R
0

W
m 1

… … … ……

BRAM BRAMBRAM BRAM… …Bankm 1

R
n 1

…

n 1

Figure 6: A generalized mW/nR memory implemented using

XOR. Each write port requires a bank (row) of BRAMs. A

column of BRAMs is required for each read port, as well as

a column for each of one less than the total number of write

ports.

the design requires a column of BRAMs that is as wide as one
less than the number of write ports, to provide sufficient internal
read ports to support writing. Furthermore, a column of BRAMs is
required for each external read port. In summary, the XOR design
requires m∗ (m−1+n) BRAMs to provide m writes and n reads.

3.4 Multipumping the XOR Design
For any memory design we can trade speed for area by operating

the memory at an internal clock frequency that is a faster multiple
of the external clock frequency, giving the illusion of having more
ports than are actually supported. We can apply this multipump-
ing [8] to either read or write ports, but not both at once. Doing
so interleaves the internal reads and writes and breaks the external
appearance of reads logically occurring before writes within the
same clock cycle. Note that relaxing this constraint would lead to

a reduction in hardware (Section 6.3), but at the cost of placing the
burden of scheduling reads and writes onto the enclosing system.

Multipumping the write ports provides the best speed/area trade-
off, resulting in (i) fewer memory banks (Figure 6), which leads to
(ii) shallower columns for each read port, and (iii) fewer columns to
feed the XOR logic of other write ports. The resulting multipumped
XOR design requires (m/f) ∗ ((m/f) − 1 + n) BRAMs, for a
given multipumping factor f ≤ m (assuming that both f and m
are powers of two).

In operation, a multipumped XOR-based memory performs all
reads and the first subset of writes on the first internal clock
cycle, then performs the remainder of the writes afterwards with
all operations completing within one external clock cycle. For
example, with 2x multipumping, all reads and the first half of all
writes happen during the first internal cycle, while the second half
of the writes happen during the second internal cycle, whose end
coincides with the end of a single encompassing external cycle.
Since no read happens after a write, a read always returns the
current memory contents as opposed to returning a value being
written.

Note that in this paper we only consider even factors of multi-
pumping—e.g., 2x and 4x, which means that for every external
cycle there are two or four internal cycles. Note also that a design
can be multi-pumped to the point where there are as many internal
cycles as there are external write ports, meaning that the internal
memory requires only one write port, which does not require the
XOR mechanism to function—i.e., one write port and N read ports
are trivially supported via replication only. Since such designs
are not XOR-based (nor LVT-based), we instead call them fully

multipumped.

4. EXPERIMENTAL FRAMEWORK
In this section we describe our experimental framework. We

evaluate the designs on Altera Stratix IV FPGAs, although we
expect similar results on comparable quality-grade Xilinx FPGAs.
We provide details on Stratix IV BRAMs, the memory designs
under study, our CAD flow, and our method for measuring speed
and area.

Stratix IV Block RAM (BRAM) Memory Modern FPGAs of-
ten implement BRAMs directly on their silicon substrate. These
BRAMs typically have two ports that can each function either as
a read or a write port. BRAMs use less area and run at a higher
frequency than ones created from the FPGA’s reconfigurable logic,
but do so at the expense of having a fixed storage capacity and
number of ports. The Stratix IV FPGAs mostly contain M9K block
RAMs2, which hold nine kilobits of information at various widths
and depths. At a width of 32 bits, an M9K holds 256 elements.

CAD Flow We use Altera’s Quartus 10.0 to target the Stratix
IV EP4SE530H40C2 FPGA, a device of the highest available
speed grade and containing 1280 M9K BRAMs. We implement
all the designs in generic Verilog-2001 without any Altera-specific
modules. We place our circuits inside a synthesis test harness
designed to both: (i) register all inputs and outputs to ensure an
accurate timing analysis, and (ii) to reduce the number of I/O
pins to a minimum as larger circuits will not otherwise fit on the
FPGA. The test harness also avoids any loss of circuitry caused by
I/O optimization. Shift registers expand single-pin inputs, while

2These FPGAs also contain M144K and MLAB memories. There
are too few M144Ks to fully explore the design space and past work
demonstrated that MLABs scale very poorly [8].

registered AND-reducers compact word-wide signals to a single
output pin.

We configured the synthesis process to favour speed over area,
and enabled all relevant optimizations, including circuit transfor-
mations such as register retiming. The impact on area of register
retiming varies, depending on the logic found beyond the I/O
registers, so the absolute results presented here might not appear
in a real system. However, comparing our designs in a real system
would yield proportionally similar results. We tested all designs
inside identical test harnesses.

We configured the place and route process to make a standard
effort at fitting with only two constraints: (i) to avoid I/O pin
registers to prevent artificially long paths that would affect the clock
frequency, and (ii) to set the target clock frequency to 550MHz,
which is the maximum clock frequency specified for M9K BRAMs.
Setting a higher target Fmax does not improve results, and may in
fact worsen them if a slower, derived clock exists and thus aims to-
wards an unnecessarily high target frequency, causing competition
for fast paths. We assume all clocks to be externally generated and
any of their fractions (e.g., half-rate) used in multipumping designs
are assumed to be synchronous to the main system clock (i.e., when
generated by a PLL).

We report maximum operating frequency (Fmax) by averaging
the results of ten place and route runs, each starting with a different
random seed for initial placement. We select the worst-case Fmax

report for the default range of die temperatures of 0 to 85◦C. Area
does not vary significantly between place and route runs, so we
report the first computed result.

Measuring Area When comparing designs as a whole, we report
area as the total equivalent area (TEA), which estimates the actual
silicon area of a design point: we calculate the sum of all the
Adaptive Logic Modules (ALMs) used partially or completely, plus
the area of the BRAMs counted as their equivalent area in ALMs.
A Stratix IV ALM contains two Adaptive Lookup Tables (ALUTs),
each roughly equivalent to a 6-LUT, two adder and carry-chain
stages, and two flip-flops. Wong et al. [14] provide the raw layout
area data: one M9K has an area equivalent to 28.7 ALMs. This
value became known only after publication by LaForest et al. [8],
which used an estimate.

Designs Considered For simplicity, we consider only the common
case of 32-bit-wide memories. We do not consider one-write-one-
read (1W/1R) memories as they directly map to a single FPGA
BRAM. Similarly, replication trivially enables 1W/nR memories.
The challenge lies in creating concurrent multiple write ports.
We evaluate a representative sample of the range of multi-ported
memory configurations with two to eight write ports and four to
16 read ports: 2W/4R, 4W/8R, and 8W/16R. We consider these
configurations over memory depths of 32 to 8k entries; some
designs with more than 2k entries begin to consume a significant
fraction of the large Altera device that we target and hence would
likely be impractically large for current-day applications. Although
the internal implementations vary, we ensure that all designs are
"black-box equivalent" from an outside point of view. Specifically,
all ports are unidirectional (read or write only), usable simulta-
neously within a single external clock cycle, and any latencies
between values being written and subsequently readable are equal
across designs. Any one design can substitute for another within
a system, with clock frequency and resource usage being the only
differences. We do not consider memories that may stall (e.g., take
multiple cycles to perform a read or write if there exists a resource
conflict), although such designs would be compelling future work.
Finally, we assume that multiple simultaneous writes to the same

1024 2048 4096 8192 16384 32768 65536
Total Equivalent Area (ALMs)

50

100

150

200

250

300

350

400

450

Av
er

ag
e

Fm
ax

 (M
Hz

)

3264 128

256
512

1024

2048

4096

32 64 128 256

512

1024

2048

4096
32
64128

256
512 1024

2048
4096

32 64 128 256
512

1024
2048

4096

32-25632-25632-25632-256 512 1024 2048
4096

32 64 128 256 512 1024
2048 4096

New LVT
Old LVT
New LVT 2x MP
Old LVT 2x MP
4x Full MP
Old LVT 4x MP

Figure 7: Speed and area of both the original (old) and im-

proved (new) 4W/8R LVT designs. MP means multipumped.

address result in undefined behavior and are thus avoided by the
enclosing system.

5. IMPROVEMENTS TO THE LVT DESIGN
For our evaluation and comparison with LVT (later in Section 6),

we make two significant improvements to the original LVT de-
sign [8]: (i) adding forwarding logic, and (ii) multipumping write
ports.

Forwarding Similar to that described earlier for the XOR design
(Figure 4), we instantiate forwarding logic around the BRAMs
of the LVT design to increase clock frequency for an area cost.
Recall that the forwarding logic bypasses the BRAMs such that if
a location being written is read during the same cycle, the read will
return the new write value (as opposed to the old stored value). To
remain compatible with the expected behavior of a one cycle read-
after-write latency, we also register write addresses and data. This
modified design increases the maximum operating frequency of the
BRAMs (including forwarding) from 375MHz to 550 MHz, since
there is a frequency cost to the Stratix IV implementation of having
a BRAM set to return old data during simultaneous read/write of
the same location [2]. Overall this makes the modified LVT designs
more competitive.

Multipumping As discussed earlier in Section 3.4, for any multi-
ported memory design we can exploit multipumping to trade speed
for area savings. Details for how to multipump the LVT design
are given by LaForest and Steffan [8]—however their described
design multipumps across read ports, while we found it to be an
improvement to instead multipump across write ports and hence
do so for the LVT implementations in this paper. Furthermore,
when the multipumping factor equals the number of external write
ports, the number of internal write ports reduces to one, eliminating
the need for the LVT circuitry entirely, further saving area and
gaining speed—as mentioned previously, we call such designs fully

multipumped.

Impact Figure 7 shows the speed and area impact of our modifica-
tions to the LVT design. For small memories (32-128 entries deep),
the new LVT is significantly faster although those are also larger
than the corresponding old versions. For the 2x-multipumped
memories, all memories are faster than the corresponding original

(a) LVT (b) XOR

Figure 8: Circuit layout of 8192-deep 2W/4R memories for (a)

LVT and (b) XOR designs, as rendered by Quartus. The thin

columns are BRAMs or DSPs (darkened indicates in-use), the

dots and dot-clouds are ALMs.

versions, and memories deeper than 256 entries are also smaller.
For the 4x-multipumped memories, all memories are both faster
and smaller than the original versions. Overall, while there are
some trade-offs between area and speed that are apparent for some
design points, for simplicity and to focus more on speed than area,
we concentrate on the new LVT designs for the remainder of this
paper.

6. COMPARING LVT VS XOR
In this section we compare the LVT and XOR approaches to

implementing multi-ported memories. We begin by visualizing the
resource usage and layout of an example of each design. Next we
compare in detail the speed and resource usage of a broad range
of memories of varying depths and numbers of ports, and then
investigate the impact of multipumping all designs. We summarize
the design space by highlighting the designs that minimize delay,
ALM usage, or BRAM usage.

6.1 Visualizing Layout
To help visualize the resource diversity of the LVT and XOR

approaches, in Figure 8 we present the circuit layout of 8192-deep
2W/4R memories for both XOR and LVT designs, as rendered
by Quartus. The thin columns represent BRAMs or DSPs, where
darkened areas indicate that the BRAMs are being used, and the
dots and dot-clouds represent ALMs. We chose 8192-deep mem-
ories because they are large relative to the capacity of the chip
and emphasize the differences between the designs. Both designs
consume resources in a somewhat circular pattern, due to Quartus’
efforts to minimize delay and resource consumption. Looking at
BRAM usage, the designs are both the same width, but the XOR
design consumes more BRAMs and hence has taller columns of
in-use BRAMs. For both designs the ALMs used are clustered
in the center, but the LVT design consumes far more ALMs than
the XOR design. Considering that each multi-ported memory
would be inserted into a larger design, one can visualize how the
XOR memory would integrate better with an enclosing design that
consumes many ALMs, and the LVT design would integrate better
with an enclosing design that demands many BRAMs.

6.2 Varying Depths and Numbers of Ports
In Figure 9 we compare LVT and XOR implementations of

2W/4R, 4W/8R, and 8W/16R memories, with depths varying from

32 entries up to 8192, 4096, and 1024 entries respectively—the
memories with more ports exhaust the available BRAMs with
fewer entries than the 2W/4R memories. For the figures on the
left we plot the average unrestricted maximum operating frequency
(Fmax)3 versus area. In particular we report the total equivalent

area (TEA) in terms of ALMs, that accounts for both ALMs and
BRAMs used, as described in Section 4. Note that the x-axis (TEA)
is logarithmic.

Fmax vs Area Looking at the results for the 2W/4R memories
(Figure 9(a)), we observe first that the LVT designs are superior
for both Fmax and TEA for 32 and 64 entries. For designs with
more than 64 entries the XOR designs consume less TEA, with
the relative savings increasing with the number of entries: e.g., for
8192-entry memories the XOR design is 51% of the area of the
LVT design. This TEA difference persists in 4W/8R and 8W/16R
memories, with the area advantage going to XOR designs with
more than 256 entries.

However, both the XOR and LVT designs trigger anomalies in
Quartus (despite averaging these results over 10 seeds as described
in Section 4): for example, for LVT 2W/4R designs the 128-entry
design is faster than the 32-entry design, and the 1024-entry design
is significantly faster than the 512-entry design, contrary to the gen-
eral trend of Fmax linearly decreasing as memory depth increases.
Similarly, the 512-entry LVT 8W/16R design has virtually the same
Fmax as the 256-entry design, contrary to expectations since going
from 256 to 512 entries doubles the number of BRAMs required.
Finally, the smallest 4W/8R XOR designs (< 512 entries) see-saw
between higher and lower TEAs and Fmax in a manner seemingly
unrelated to the memory depth, as does the Fmax of the 64-entry
8W/16R XOR design.

Disregarding the anomalies, it is apparent that for smaller de-
signs the LVT approach is generally faster or equally-fast as the
corresponding XOR designs, while deeper designs save more area
and gain more speed from the XOR approach.

BRAMs vs ALMs In the figures on the right of Figure 9, we
expand on our TEA metric to view the actual numbers of BRAMs
and ALMs consumed by each design—note that both axes are
logarithmic. Looking at Figure 9(a) as an example, we first note
that the resource diversity of the two designs is clearly evident, with
XOR designs consuming far fewer ALMs but more BRAMs than
the corresponding LVT designs. Hence the relative availability of

ALMs or BRAMs in a given encompassing design plays a large

role in the selection of the best choice of multi-ported memory

implementation. Looking in more detail, we observe that the
number of BRAMS used is constant for both designs for 32-256
entries, reflecting the native capacity of each BRAM. The number
of ALMs used by XOR memories grows very slowly as memory
depth increases, since for the XOR design ALMs are used only
to implement the XOR operations and forwarding logic, both of
which grow linearly with memory width and only logarithmically
with memory depth. In contrast, the number of ALMs used by
LVT memories grows with memory depth since (i) they are used
to construct the LVT itself, which grows significantly for deep
and/or many-ported memories, and (ii) they implement forwarding
logic, which grows with the number of BRAMs used. Due to
the extra replicated memories required to support the write port
XOR operations, XOR designs consume more BRAMS than the
corresponding LVT designs—e.g., for the 8192-entry memories the
XOR design consumes 25% more BRAMs than the LVT design.

3Note that a minimum clock pulse width requirement for the
BRAMs restricts the actual Fmax to 550MHz on Stratix IV devices.

512 1024 2048 4096 8192 16384 32768
Total Equivalent Area (ALMs)

250

300

350

400

450

500

Av
er

ag
e

Fm
ax

 (M
Hz

)

32 64 128

256

512

1024

2048

4096

8192

32-25632-25632-25632-256

512

1024

2048

4096

8192

LVT
XOR

(a) 2W/4R: Fmax vs. Total Equivalent Area

512 1024 2048 4096 8192 16384
Number of ALMs Used

4

8

16

32

64

128

256

512

Nu
m

be
r o

f B
RA

M
s

Us
ed

32-25632-25632-25632-256

512

1024

2048

4096

8192

32 64 128 256

512

1024

2048

4096

8192

XOR
LVT

(b) 2W/4R: BRAMs used vs. ALMs used

2048 4096 8192 16384 32768 65536
Total Equivalent Area (ALMs)

200

250

300

350

400

450

Av
er

ag
e

Fm
ax

 (M
Hz

)

32 64 128

256

512

1024

2048

4096

3264
128

256

512

1024

2048

4096

LVT
XOR

(c) 4W/8R: Fmax vs. Total Equivalent Area

2048 4096 8192 16384 32768 65536
Number of ALMs Used

16

32

64

128

256

512

1024

Nu
m

be
r o

f B
RA

M
s

Us
ed

3264 128256

512

1024

2048

4096

3264 128256

512

1024

2048

4096

XOR
LVT

(d) 4W/8R:BRAMs used vs. ALMs used

8192 16384 32768 65536
Total Equivalent Area (ALMs)

200

220

240

260

280

300

320

340

360

Av
er

ag
e

Fm
ax

 (M
Hz

)

32

64

128

256
512

1024

32-256

64

32-25632-256

512

1024

LVT
XOR

(e) 8W/16R: Fmax vs. Total Equivalent Area

8192 16384 32768
Number of ALMs Used

64

128

256

512

1024

Nu
m

be
r o

f B
RA

M
s

Us
ed

32-25632-25632-25632-256

512

1024

32 64 128 256

512

1024

XOR
LVT

(f) 8W/16R: BRAMs used vs. ALMs used

Figure 9: Speed and area for LVT and XOR implementations of 2W/4R, 4W/8R, and 8W/16R memories of increasing depth. For

each we show average Fmax vs total equivalent area (on the left), as well as BRAMs vs ALMs (on the right).

Design that minimizes:

Depth Delay ALMs BRAMs

32 Equal LVT LVT

64 LVT LVT LVT

128 LVT XOR LVT

256 Equal XOR LVT

512 XOR XOR LVT

1024 Equal XOR LVT

2048 XOR XOR LVT

4096 XOR XOR LVT

8192 XOR XOR LVT

(a) 2W/4R

Design that minimizes:

Depth Delay ALMs BRAMs

32 LVT LVT LVT

64 LVT LVT LVT

128 LVT Equal LVT

256 Equal XOR LVT

512 Equal XOR LVT

1024 XOR XOR LVT

2048 XOR XOR LVT

4096 XOR XOR LVT

(b) 4W/8R

Design that minimizes:

Depth Delay ALMs BRAMs

32 LVT LVT LVT

64 LVT LVT LVT

128 LVT Equal LVT

256 Equal XOR LVT

512 LVT XOR LVT

1024 XOR XOR LVT

(c) 8W/16R

Figure 10: For each memory depth, listed is the design that minimizes delay (i.e., has the highest Fmax), the number of ALMs used,

or the number of BRAMs used, for (a) 2W/4R, (b) 4W/8R, and (c) 8W/16R memories. Results within 5% are considered “Equal”.

Increasing Ports Figures 9(c), (d), (e), and (f) plot the results
for 4W/8R and 8W/16R memories, which at a high level show
similar trends as the 2W/4R memories, but with some notable dif-
ferences. As the number of ports increases, so does the frequency
gap between LVT and XOR designs, with XOR designs becoming
comparatively slower. The TEA advantage of XOR designs also
diminishes: e.g., for the 1024-entry 8W/16R memories the XOR
design is only 18% smaller. Looking at Figure 9(f), we see that the
XOR designs now consume a more significant number of ALMs
to support XOR operations and forwarding logic. The area of these
functions increases in proportion to the product of the number of
read and write ports: e.g., going from 2W/4R to 4W/8R quadruples
the number of ALMS required by XOR designs of the same depth.

Navigating the Design Space From the point of view of a system
designer, a key question is “What is the best memory design to use

given my constraints?”. To summarize the design space we list
in Figure 10 the design that, for each memory depth, minimizes
delay (i.e., has the highest Fmax), the number of ALMs used, or
the number of BRAMs used, displayed for (a) 2W/4R, (b) 4W/8R,
and (c) 8W/16R memories. Note that any results within 5% of
each other are considered to be roughly equal due to normal CAD
variation and are labeled as such. First, we note that the LVT
designs always use the least BRAMs, regardless of depth or number
of ports. In terms of ALM use, designs with 64 or fewer entries are
most efficiently implemented via the LVT approach, and designs
with 256 or greater entries are most efficiently implemented via
the XOR approach. For 128 entries the designs have roughly
equivalent ALM usage, although for the 128-entry 2W/4R memory
the XOR design has a greater than 5% advantage. In terms of
maximizing Fmax, the LVT design is generally faster for shallower
memories while the XOR design is faster for deeper memories.
The crossover point is around 256-1024 entries, depending on
the number of ports, and obscured somewhat by the previously-
discussed CAD anomalies.

6.3 Impact of Multipumping
Figure 11 shows the average unrestricted Fmax vs TEA for

LVT and XOR implementations of (a) 2W/4R, (b) 4W/8R, and
(c) 8W/16R memories of increasing depth, including the 2x and
4x multipumped (MP) and fully-multipumped (Full MP) designs.
Looking first at Figure 11(a) for 2W/4R memories, since these
designs have only two write ports, multipumping by 2x results in
a fully-multipumped design (rather than an LVT or XOR design).
The resulting impact on speed and area is as expected, resulting in
memories that are smaller but slower: for example, the 32-entry
fully-multipumped memory is 53% of the speed but also 48.7%
fewer equivalent ALMs than the 32-entry LVT memory.

The value of considering both LVT and XOR designs is more
apparent from Figures 11(b) and (c), where considering the mul-
tipumping factor and choice of LVT vs XOR implementation pro-
vides designers with a significant range of options in the speed vs
area trade-off space. Looking at Figure 11(b) for 4W/8R mem-
ories and focusing on the 2x multipumped (2x MP) designs, we
observe that LVT designs are faster but significantly larger than
their XOR counterparts. At the extreme, the 4096-entry XOR
memory consumes 46.4% of the equivalent ALMs of the 2048-
entry LVT design, even though the LVT design has half of the
entries. The fully-multipumped design (Full MP) further repeats
this significant trade-off between speed and area. Multipumping
provides a greater relative area savings for XOR designs than for
LVT designs: for XOR designs multipumping reduces the num-
ber of replicated BRAMs to a greater extent and correspondingly
reduces the XOR logic. The range of possibilities provided by
these design permutations is significant: for example, for a 4096-
entry 4W/8R memory, the design options range from 271MHz
using 23,828 equivalent ALMs all the way to 104MHz using 4,875
equivalent ALMs.

For Figure 11(c) for 8W/16R memories we see a similarly-
impressive range of design possibilities. Note that we did not
include the fully-multipumped implementation for this design as
its resulting Fmax is unusably low (i.e., less than 50MHz).

Navigating the Design Space As in the previous section, it
is important to have a summary view of the best designs for
given constraints. For the multipumped designs, namely the 2x
multipumped 4W/8R memories and the 2x and 4x multipumped
8W/16R memories, the result is straightforward: to minimize delay
(i.e., maximize Fmax) or to minimize BRAM usage, use the LVT
designs; to minimize ALM usage, use the XOR designs.

7. RELATED WORK
Most prior work on multi-ported memories for FPGAs focuses

on register files for soft-processors. Simple replication provides the
1W/2R register file required to support a three-operand ISA [1, 5,
6, 10, 15]. Jones et al. [7] implement a VLIW soft processor with
a multi-ported register file implemented entirely in logic elements,
limiting the operating frequency. Saghir et al. [12, 13] also imple-
ment a multi-ported register file for a VLIW soft-processor, but use
replication and banking of BRAMs; however, their compiler must
schedule register accesses to avoid conflicting reads and writes.
Manjikian aggressively multipumps memories by performing reads
and writes on consecutive rising and falling clock edges within a
processor cycle [9]—unfortunately, this design forces a multiple-
phase clock on the entire system. More recently, Anjam et al. [3]
successfully use a LVT-based register file for their reconfigurable

256 512 1024 2048 4096 8192 16384 32768
Total Equivalent Area (ALMs)

150

200

250

300

350

400

450

500
Av

er
ag

e
Fm

ax
 (M

Hz
)

3264 128

256

512

1024

2048

4096

8192

32-25632-25632-25632-256
512

1024

2048

4096

8192

32-25632-25632-25632-256512 1024 2048

4096

8192

LVT
XOR
2x Full MP

(a) 2W/4R: Fmax vs. Total Equivalent Area

512 1024 2048 4096 8192 16384 32768 65536
Total Equivalent Area (ALMs)

100

150

200

250

300

350

400

450

Av
er

ag
e

Fm
ax

 (M
Hz

)

32 64 128

256
512

1024

2048

4096

3264
128

256

512

1024 2048

4096

32
64128

256
512 1024

2048
4096

32-25632-25632-25632-256
512

1024
2048

409632-25632-25632-25632-256 512 1024
2048 4096

LVT
XOR
LVT 2x MP
XOR 2x MP
4x Full MP

(b) 4W/8R: Fmax vs. Total Equivalent Area

2048 4096 8192 16384 32768 65536
Total Equivalent Area (ALMs)

50

100

150

200

250

300

350

400

Av
er

ag
e

Fm
ax

 (M
Hz

)

32
64

128

256 512

1024

32-256

64

32-25632-256

512

1024
32
64
128

256
512

102432-25632-25632-25632-256 512 102432-25632-25632-25632-256
512 102432-25632-25632-25632-256 512 1024

LVT
XOR
LVT 2x MP
XOR 2x MP
LVT 4x MP
XOR 4x MP

(c) 8W/16R: Fmax vs. Total Equivalent Area

Figure 11: Fmax vs TEA for LVT and XOR implementations

of 2W/4R, 4W/8R, and 8W/16R memories of increasing depth,

including multipumped designs.

VLIW soft-processor and add one more addressing bit internally
to enable splitting a 4W/8R register file into two independent
2W/4R instances. Later work by Anjam et al. [4] removes the
need for the LVT by avoiding write bank conflicts via compile-time

register renaming, but this solution requires more registers than are
architecturally visible.

8. CONCLUSIONS
In this paper we introduced an approach to implementing multi-

ported memories—composed of the two-ported block RAMs pro-
vided on FPGAs—that exploits the properties of the XOR operation
to eliminate both the output multiplexing and logic-based lookup
table required by the best prior approach, the Live Value Table
(LVT) [8]. Targeting an Altera Stratix IV FPGA, we compared over
100 designs that implement both the LVT and XOR approaches and
span a broad range of memory depths and numbers of ports. We
found that:

• using forwarding logic improves the maximum speed of LVT
designs;

• for both XOR and LVT designs, multipumping the write
ports instead of the read ports yields a greater reduction in
area;

• the XOR designs use far less logic but more block RAMs
than the LVT designs, demonstrating a resource diversity
between the two designs that makes them each desirable for
different use-cases;

• for shallower designs the LVT approach is generally faster
or equally-fast as the corresponding XOR designs, while the
XOR designs with more than 64-entries are smaller, and with
more than 512 entries are also faster than the corresponding
LVT designs;

• exploiting multipumping greatly expands the possible design
space with a large range of area and speed trade-offs;

• and multipumped XOR designs are significantly smaller but
slower than their LVT counterparts.

To summarize, both the LVT and XOR approaches are valuable
and useful in different situations, depending on the constraints and
resource utilization (block RAMs vs logic) of the enclosing design.
Designers can use the results of this work as a guide when choosing
an appropriate design to implement a multi-ported memory.

9. FUTURE WORK
The results of this paper suggest several compelling avenues for

future work.

Port to Xilinx FPGA Devices Although the design principles of
XOR and LVT memories are generic and applicable to any FPGA
device with block RAMs, we have only measured their frequencies
and resource usage on Altera FPGAs. These CAD results and
hence the trade-off space could be different for Xilinx or other
FPGA devices.

Pure Multi-Pumping inside XOR Memory We could reduce
the number of BRAM columns and thus the amount of XOR logic
required for the XOR design by using the BRAMs in True-Dual-

Port mode (where each port can perform either a read or a write
each cycle), and then multipumping them to appear as a 1W/2R
memory each—although True-Dual-Port mode suffers a significant
reduction in clock frequency.

Different Ratios of Read/Write Ports For this paper we focused
on memories with twice as many read ports than write ports, which

are common for many applications such as processor register files.
Memories with other ratios of read/write ports should be studied.

Stalling Designs For this paper we also focused on memories
that do not stall, meaning that all read and write ports complete
their requests every cycle. Designs that trade this restriction for
area savings or speed, for example by having reads that may take
multiple cycles to service, would also be interesting to investigate.

Power Analysis Compared to XOR memories, LVT memories
(i) use fewer BRAMs but more logic, and (ii) access BRAMs
with different read/write patterns; hence it would be interesting to
determine how the dynamic power power consumption of the two
approaches compares.

10. ACKNOWLEDGMENTS
The authors thank Altera and NSERC for financial support. We

also thank Vaughn Betz, Jonathan Rose, and Ketan Padalia for
help with tuning Quartus and our test harness, and the anonymous
reviewers for constructive feedback.

11. REFERENCES
[1] Nios II Processor Reference Handbook.

http://www.altera.com/literature/hb/

nios2/n2cpu_nii5v1.pdf, March 2009. Version 9.0,
Accessed Sept. 2009.

[2] DC and Switching Characteristics for Stratix IV Devices.
http://www.altera.com/literature/hb/

stratix-iv/stx4_siv54001.pdf, June 2011.
Version 5.1, Accessed Aug. 2011.

[3] F. Anjam, M. Nadeem, and S. Wong. A vliw softcore
processor with dynamically adjustable issue-slots. In
Field-Programmable Technology (FPT), 2010 International

Conference on, pages 393 –398, dec. 2010.

[4] F. Anjam, S. Wong, and F. Nadeem. A multiported register
file with register renaming for configurable softcore vliw
processors. In Field-Programmable Technology (FPT), 2010

International Conference on, pages 403 –408, dec. 2010.

[5] R. Carli. Flexible MIPS Soft Processor Architecture.
Technical report, Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory,
June 2008.

[6] B. Fort, D. Capalija, Z. Vranesic, and S. Brown. A
Multithreaded Soft Processor for SoPC Area Reduction. In
IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 131–142, April 2006.

[7] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster.
An FPGA-based VLIW processor with custom hardware
execution. In International Symposium on

Field-Programmable Gate Arrays, 2005.

[8] C. E. LaForest and J. G. Steffan. Efficient Multi-ported
Memories for FPGAs. In Proceedings of the 18th annual

ACM/SIGDA international symposium on Field

programmable gate arrays, FPGA ’10, pages 41–50, New
York, NY, USA, 2010. ACM.

[9] N. Manjikian. Design Issues for Prototype Implementation
of a Pipelined Superscalar Processor in Programmable
Logic. In PACRIM 2003: IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing,
volume 1, pages 155–158 vol.1, Aug. 2003.

[10] R. Moussali, N. Ghanem, and M. A. R. Saghir. Supporting
multithreading in configurable soft processor cores. In
CASES ’07: Proceedings of the 2007 international

conference on Compilers, Architecture, and Synthesis for

Embedded Systems, pages 155–159, New York, NY, USA,
2007. ACM.

[11] D. A. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (raid). In Proceedings

of the 1988 ACM SIGMOD international conference on

Management of data, 1988.

[12] M. Saghir and R. Naous. A Configurable Multi-ported
Register File Architecture for Soft Processor Cores. In ARC

2007: Proceedings of the 2007 International Workshop on

Applied Reconfigurable Computing, pages 14–25.
Springer-Verlag, March 2007.

[13] M. A. R. Saghir, M. El-Majzoub, and P. Akl. Datapath and
ISA Customization for Soft VLIW Processors. In ReConFig

2006: IEEE International Conference on Reconfigurable

Computing and FPGAs, pages 1–10, Sept. 2006.

[14] H. Wong, V. Betz, and J. Rose. Comparing fpga vs. custom
cmos and the impact on processor microarchitecture. In
Proceedings of the 19th ACM/SIGDA international

symposium on Field programmable gate arrays, FPGA ’11,
pages 5–14, New York, NY, USA, 2011. ACM.

[15] P. Yiannacouras, J. G. Steffan, and J. Rose.
Application-specific customization of soft processor
microarchitecture. In FPGA ’06: Proceedings of the 2006

ACM/SIGDA 14th international symposium on Field

Programmable Gate Arrays, pages 201–210, New York, NY,
USA, 2006. ACM.

