
High-Speed Soft-Processor Architecture
For FPGA Overlays

Charles Eric LaForest

SGS Final Oral Examination
December 5th, 2014

2

Motivation
● Designing on FPGAs remains difficult

– Larger systems

– Longer CAD processing times

– Increases time-to-market and engineering costs

3

FPGA Design Processes
● Hardware Description Languages (Verilog, VHDL)

– Precise implementation

– Low-level and tedious

– Long CAD processing time

4

FPGA Design Processes
● High-Level Synthesis (LegUp, Bluespec)

– Easier, faster design and exploration

– Mostly same performance as HDL

– “Black-Box” implementations

– Long CAD processing time

5

FPGA Design Processes
● Overlays (soft-processors)

– Easiest and fastest: design as software

– Co-design hardware only if necessary

– Fast overall design cycle

– Lower performance

– Higher area

6

FPGA Design Processes
● Soft-processor vs. underlying FPGA (Stratix IV)

– Logic Fabric: 800 MHz

– Block RAM: 550 MHz

– DSP Block: 480 MHz

– Nios II/f: 240 MHz

7

FPGA Design Processes

● How do we improve overlay performance?

8

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

9

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)

10

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)
● Low Architectural Overhead

– Low CPI, instruction count

11

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)
● Low Architectural Overhead

– Low CPI, instruction count

● Few Stalls
– Data and Control dependencies, Memory latency

12

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)
● Low Architectural Overhead

– Low CPI, instruction count

● Few Stalls
– Data and Control dependencies, Memory latency

● Simple and Minimal

13

Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)
● Low Architectural Overhead

– Low CPI, instruction count

● Few Stalls
– Data and Control dependencies, Memory latency

● Simple and Minimal
● Congruent to underlying FPGA

– Word widths, pipeline depths, primitives

14

Multi-Threaded Overlay Architecture
● Must pipeline to absorb FPGA delays

– Problem: dependencies between pipeline stages

15

Multi-Threaded Overlay Architecture
● Must pipeline to absorb FPGA delays

– Problem: dependencies between pipeline stages

● Proposed solution: fully-pipelined multi-threading
– Full pipelining to maximize Fmax

– “Single-cycle” thread instructions over entire pipeline

– Multiple threads for SIMD and MIMD parallelism

16

Multi-Threaded Overlay Architecture
● Must pipeline to absorb FPGA delays

– Problem: dependencies between pipeline stages

● Proposed solution: fully-pipelined multi-threading
– Full pipelining to maximize Fmax

– “Single-cycle” thread instructions over entire pipeline

– Multiple threads for SIMD and MIMD parallelism

● Only allow fixed round-robin scheduling
– Unlike HEP, Tera, UTMT II, CUSTARD, NetThreads

– No pipeline dependencies (almost...)

– Determinism enables thread composition

17

Self-Loop Characterization (BRAM)

398 MHz

● Accounts for interconnect and clock-to-out delay

18

Self-Loop Characterization (BRAM)

398 MHz 656 MHz

● Accounts for interconnect and clock-to-out delay

19

Self-Loop Characterization (BRAM)

398 MHz 656 MHz

531 MHz

● Accounts for interconnect and clock-to-out delay

20

Self-Loop Characterization (BRAM)

398 MHz 656 MHz

531 MHz 710 MHz

● Accounts for interconnect and clock-to-out delay

21

Self-Loop Characterization (BRAM)

398 MHz 656 MHz

531 MHz 710 MHz

● Accounts for interconnect and clock-to-out delay
● Minimum clock pulse width of 500 to 550 MHz
● Absolute upper frequency limit on Stratix IV

22

Overlay High-Level Architecture

23

Overlay High-Level Architecture

24

Overlay High-Level Architecture

25

Memory High-Level Architecture

26

Memory High-Level Architecture

27

Dual-Pipeline Multiplier

28

Dual-Pipeline Multiplier

480 MHz

480 MHz

29

Dual-Pipeline Multiplier

600 MHz

30

Fully-Pipelined ALU

31

Fully-Pipelined ALU

Logic Unit

32

Fully-Pipelined ALU

600 MHz

33

Fully-Pipelined ALU

34

Octavo Soft-Processor

● Reaches 550 MHz on Stratix IV FPGA
● 8 threads (fixed round-robin)
● 1024 36-bit integer words for each I/A/B memory

35

Octavo Soft-Processor

● Reaches 550 MHz on Stratix IV FPGA
● 8 threads (fixed round-robin)
● 1024 36-bit integer words for each I/A/B memory

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6
(Previous Round)

36

Instruction Memory

37

Empty Pipeline Stages

● Derived from BRAM self-loop characterization
● Used for special functions later...

38

A and B Data Memories

● Memory-mapped I/O ports for Accelerators

39

Controller

● Computes next PC for each thread (8 PCs)

40

ALU

● Output (R) written to all memories

41

Data Path

● 8 stages (2 read, 4 compute, 2 write)

42

Control Path

● 8 stages to match Data Path
● Offset due to empty stages (1,2,3)
● 1-cycle RAW hazard from ALU to Instr. Mem.

43

44

45

46

High Fmax over Design Space

47

High Fmax over Design Space

36 bits

48

Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism

– Datapaths: SIMD

– Processors: MIMD

49

Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism

– Datapaths: SIMD

– Processors: MIMD

● CAD optimizations now worsen performance!

50

Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism

– Datapaths: SIMD

– Processors: MIMD

● CAD optimizations now worsen performance!
● Simple way to steer CAD tool

– ...without source annotations or per-node CAD
● R. Scoville, “Register Duplication for Timing Closure”,

Altera Wiki, 2011

– ...without increasing CAD processing time

51

Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism

– Datapaths: SIMD

– Processors: MIMD

● CAD optimizations now worsen performance!
● Simple way to steer CAD tool

– ...without source annotations or per-node CAD
● R. Scoville, “Register Duplication for Timing Closure”,

Altera Wiki, 2011

– ...without increasing CAD processing time

● Meshes of Scalar and SIMD Octavo Cores

52

Tiling Datapaths for SIMD

53

Multi-Local Logic

● Same simultaneous inputs and/or states
● CAD tool “de-duplicates” to save area

54

Harmful Optimization

● Same simultaneous inputs and/or states
● CAD tool “de-duplicates” to save area
● But creates artificial critical paths!

55

Logical Partitioning

● Partition each Lane as a separate netlist
● Prevents optimizations across partitions
● Easily avoids harmful optimizations...
● ...without preventing useful ones!

56

Impact on Speed

57

Flat: 373 MHz

Partitioning a 32-Way SIMD Octavo

58

Flat: 373 MHz Per-Lane: 489 MHz

Partitioning a 32-Way SIMD Octavo

59

Meshes of Octavo Cores

● Scalar or SIMD Cores
● New Multi-Localities

60

Meshes of Octavo Cores

● Scalar or SIMD Cores
● New Multi-Localities

● 3-bit thread counter
● 1 per Core

#

##

61

F
m

a
x

(M
H

z)

4x8 (Scalar) 4x4 (2-way) 2x4 (4-way) 1x1 (32-way)
350

370

390

410

430

450

470

490

Flat Per-Core Per-Lane

Meshes with 32 Datapaths Total

62

F
m

a
x

(M
H

z)

4x8 (Scalar) 4x4 (2-way) 2x4 (4-way) 1x1 (32-way)
350

370

390

410

430

450

470

490

Flat Per-Core Per-Lane

Meshes with 32 Datapaths Total

63

F
m

a
x

(M
H

z)

4x8 (Scalar) 4x4 (2-way) 2x4 (4-way) 1x1 (32-way)
350

370

390

410

430

450

470

490

Flat Per-Core Per-Lane

Meshes with 32 Datapaths Total

64

Mesh of 102 Octavo Cores
F

m
a

x
(M

H
z)

17x6 (Scalar)
0

50

100

150

200

250

300

350

400

450
Flat Per-Core

65

Mesh of 102 Scalar Octavos (17x6)

Flat: 331 MHz

66

Mesh of 102 Scalar Octavos (17x6)

Flat: 331 MHz Per-Lane: 489 MHz

67

Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control (per thread)

– Worsened by hardware assistance

68

Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control (per thread)

– Worsened by hardware assistance

● Solutions
– Extract overhead as “sub-programs” (per thread)

– Execute them in parallel along the pipeline

– Decreases Fmax 6.1%, increases area 73%*

69

Sequential Sub-Programs in MIPS
outer: seed_ptr = ptr_init
inner: temp = MEM[seed_ptr]
 if (temp < 0):
 goto outer
 temp2 = temp & 1
 if (temp2 == 1):
 temp = (temp * 3) + 1
 else:
 temp = temp / 2
 MEM[seed_ptr] = temp
 seed_ptr += 1
 OUTPUT = temp
 goto inner

● Flow-control
● Addressing
● Useful work

70

Sequential Sub-Programs in Octavo
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

71

Removing Flow-Control Overhead
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

72

Parallel Sub-Programs in Octavo
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

73

Parallel Sub-Programs in Octavo

outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
 ADD temp, temp, 1 ; JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 SW temp, OUTPUT ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work

74

Parallel Sub-Programs in Octavo

outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
 ADD temp, temp, 1 ; JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 SW temp, OUTPUT ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work

75
Hailstone Increment Reverse FIR FSM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Unrolled ("perfect" MIPS) Looping (modified Octavo)

Speedups

76
Hailstone Increment Reverse FIR FSM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Unrolled ("perfect" MIPS) Looping (modified Octavo)

Speedups

77

Reduced-Overhead Octavo

78

Reduced-Overhead Octavo

(Branches not in fetched instructions!)

Branch Trigger Module (BTM)

79

Reduced-Overhead Octavo

Address Offset Module (AOM)

(One entry for each instruction operand)

80

Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

81

Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

– MXP (Soft Vector Processor)
● A. Severance, J. Edwards, H. Omidian, G. Lemieux, “Soft

Vector Processors with Streaming Pipelines”, FPGA 2014

82

Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

– MXP (Soft Vector Processor)
● A. Severance, J. Edwards, H. Omidian, G. Lemieux, “Soft

Vector Processors with Streaming Pipelines”, FPGA 2014

– LegUp (plain C HLS)
● A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,

T. Czajkowski, S. D. Brown, J. H. Anderson, “LegUp: An
Open-source High-level Synthesis Tool for FPGA-based
Processor/Accelerator Systems”, TRETS, Sept. 2013

83

Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

– MXP (Soft Vector Processor)
● A. Severance, J. Edwards, H. Omidian, G. Lemieux, “Soft

Vector Processors with Streaming Pipelines”, FPGA 2014

– LegUp (plain C HLS)
● A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,

T. Czajkowski, S. D. Brown, J. H. Anderson, “LegUp: An
Open-source High-level Synthesis Tool for FPGA-based
Processor/Accelerator Systems”, TRETS, Sept. 2013

– Verilog (hand-optimized HDL for speed)

84

Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

– MXP (Soft Vector Processor)
● A. Severance, J. Edwards, H. Omidian, G. Lemieux, “Soft

Vector Processors with Streaming Pipelines”, FPGA 2014

– LegUp (plain C HLS)
● A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,

T. Czajkowski, S. D. Brown, J. H. Anderson, “LegUp: An
Open-source High-level Synthesis Tool for FPGA-based
Processor/Accelerator Systems”, TRETS, Sept. 2013

– Verilog (hand-optimized HDL for speed)

● All results relative to a Scalar Octavo core

85

Octavo

● 1 to 32 SIMD Datapaths total (-L1 to -L32)
● Each Datapath has Accelerators on I/O Ports:

– Accumulator

– Array Reversal Channel

86

MXP

● -V1 to -V32 Vector Lanes, with table-lookups

87

Sequential Speedup

Reverse-3 Hailstone-S Hailstone-A FSM-S FSM-A
-8

-6

-4

-2

0

2

4

6

8
MXP-V1 MXP-Nios LegUp HDL

S
pe

ed
up

 v
s.

 S
ca

la
r

O
ct

av
o

88

Sequential Speedup

Reverse-3 Hailstone-S Hailstone-A FSM-S FSM-A
-8

-6

-4

-2

0

2

4

6

8
MXP-V1 MXP-Nios LegUp HDL

S
pe

ed
u

p
vs

.
S

ca
la

r
O

ct
av

o

89

Sequential Speedup

Reverse-3 Hailstone-S Hailstone-A FSM-S FSM-A
-8

-6

-4

-2

0

2

4

6

8
MXP-V1 MXP-Nios LegUp HDL

(20.6) (8.81)

S
pe

ed
u

p
vs

.
S

ca
la

r
O

ct
av

o

90

Sequential Speedup

Reverse-3 Hailstone-S Hailstone-A FSM-S FSM-A
-8

-6

-4

-2

0

2

4

6

8
MXP-V1 MXP-Nios LegUp HDL

(20.6) (157) (8.81)

S
pe

ed
u

p
vs

.
S

ca
la

r
O

ct
av

o

91

Parallel Speedup

Increment Hailstone-N Reverse-4 FIR
-2
0
2
4
6
8

10
12
14
16
18
20
22

Octavo-L2
Octavo-L4
Octavo-L8
Octavo-L16
Octavo-L32
MXP-V1
MXP-V2
MXP-V4
MXP-V8
MXP-V16
MXP-V32

S
pe

e
du

p
vs

.
S

ca
la

r
O

ct
av

o

92

Parallel Speedup

Increment Hailstone-N Reverse-4 FIR
-2
0
2
4
6
8

10
12
14
16
18
20
22

Octavo-L2
Octavo-L4
Octavo-L8
Octavo-L16
Octavo-L32
MXP-V1
MXP-V2
MXP-V4
MXP-V8
MXP-V16
MXP-V32

(23.6)

S
pe

ed
up

 v
s.

 S
ca

la
r

O
ct

av
o

93

Summary of Contributions
● How do we improve overlay performance?

94

Summary of Contributions
● How do we improve overlay performance?

1. Octavo: 500+ MHz soft-processor
● Operates at >90% of absolute maximum on Stratix IV FPGA
● C. E. LaForest, J. G. Steffan, “Octavo: An FPGA-Centric Processor Family”,
FPGA 2012

95

Summary of Contributions
● How do we improve overlay performance?

1. Octavo: 500+ MHz soft-processor
● Operates at >90% of absolute maximum on Stratix IV FPGA
● C. E. LaForest, J. G. Steffan, “Octavo: An FPGA-Centric Processor Family”,
FPGA 2012

2. Preserved performance under scaling
● e.g.: Fmax -22% over 102x scaling
● C. E. LaForest, J. G. Steffan, “Maximizing Speed and Density of Tiled FPGA Overlays
via Partitioning”, ICFPT 2013

96

Summary of Contributions
● How do we improve overlay performance?

1. Octavo: 500+ MHz soft-processor
● Operates at >90% of absolute maximum on Stratix IV FPGA
● C. E. LaForest, J. G. Steffan, “Octavo: An FPGA-Centric Processor Family”,
FPGA 2012

2. Preserved performance under scaling
● e.g.: Fmax -22% over 102x scaling
● C. E. LaForest, J. G. Steffan, “Maximizing Speed and Density of Tiled FPGA Overlays
via Partitioning”, ICFPT 2013

3. Overlap execution overhead with useful work
● Better speedup than loop unrolling on “perfect” MIPS CPU
● C. E. LaForest, J. H. Anderson, J. G. Steffan, “Approaching Overhead-Free Execution
on FPGA Soft-Processors”, ICFPT 2014

97

● Programming Support

Future Work

98

● Programming Support
● Further reduce execution overhead

Future Work

99

● Programming Support
● Further reduce execution overhead
● Increase resource diversity

Future Work

100

● Programming Support
● Further reduce execution overhead
● Increase resource diversity
● Increase efficiency

– Non-branching code

– Internal Memory bandwidth

– Bit-level Parallelism

– ALU Utilization

– Measure/Reduce Power

Future Work

101

Future Work

https://github.com/laforest/Octavo

102

Extra Slides

103

Impact on Area

104

Impact on Area

5% area gap

105

AOM/BTM Configurations

106

Logic Element (LE)

107

Logic Cluster (LC)

108

Switch Boxes and Connection Blocks

109

Generic Island-Style FPGA

110

Hard Blocks (RAM, DSP)

111

Interconnect Delay Dominates

112

Fmax vs. Memory Depth

113

Fmax vs. Memory Depth

114

115

Branch Trigger Module

116

Branch Trigger Module

117

Address Offset Module

118

Address Offset Module

119

Efficiency Increase

Hailstone Increment Reverse FIR FSM
1

1.1

1.2

1.3

1.4

1.5

1.6
Unrolled ("perfect" MIPS) Looping (modified Octavo)

120

Efficiency Increase

Hailstone Increment Reverse FIR FSM
1

1.1

1.2

1.3

1.4

1.5

1.6
Unrolled ("perfect" MIPS) Looping (modified Octavo)

(0.828)

121

Parallel Speedup

Increment Hailstone-N Reverse-4 FIR
-2
0
2
4
6
8

10
12
14
16
18
20
22

Octavo-L2
Octavo-L4
Octavo-L8
Octavo-L16
Octavo-L32
MXP-V1
MXP-V2
MXP-V4
MXP-V8
MXP-V16
MXP-V32
LegUp
HDL

(23.6)

S
pe

ed
up

 v
s.

 S
ca

la
r

O
ct

av
o

122

Sequential Area Ratios

Reverse-3 Hailstone-S Hailstone-A FSM-S FSM-A
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2
MXP-V1 MXP-Nios LegUp HDL

(-24.5) (-33.5)

123

Parallel Area Ratios

Increment Hailstone-N Reverse-4 FIR
-17

-13

-9

-5

-1

3

7

11

15

19

23 Octavo-L2
Octavo-L4
Octavo-L8
Octavo-L16
Octavo-L32
MXP-V1
MXP-V2
MXP-V4
MXP-V8
MXP-V16
MXP-V32
LegUp
HDL

124

Planning for Larger Systems

● Problems
– Inefficient use of memory (overlapping)

– Wasting I/O ports on low-traffic control hardware

– Software busy-wait loops for I/O

125

Planning for Larger Systems

● Problems
– Inefficient use of memory (overlapping)

– Wasting I/O ports on low-traffic control hardware

– Software busy-wait loops for I/O

● Solutions
– Extending the write address space (2 spare bits)

– Predicating instructions on I/O port readiness

– Decreases Fmax 4.5%, increases area 5.5%

126

Instruction I/O Predication

● Empty/Full bit on each read/write I/O port
● Annul instruction if not all addressed ports ready
● Re-issue instruction next thread cycle

