
High-Speed Soft-Processor Architecture
For FPGA Overlays

Charles Eric LaForest

SGS Final Oral Examination
December 5th, 2014



2

Motivation
● Designing on FPGAs remains difficult

– Larger systems

– Longer CAD processing times

– Increases time-to-market and engineering costs
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FPGA Design Processes
● Hardware Description Languages (Verilog, VHDL)

– Precise implementation

– Low-level and tedious

– Long CAD processing time
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FPGA Design Processes
● High-Level Synthesis (LegUp, Bluespec)

– Easier, faster design and exploration

– Mostly same performance as HDL

– “Black-Box” implementations

– Long CAD processing time
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FPGA Design Processes
● Overlays (soft-processors)

– Easiest and fastest: design as software

– Co-design hardware only if necessary

– Fast overall design cycle

– Lower performance

– Higher area
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FPGA Design Processes
● Soft-processor vs. underlying FPGA (Stratix IV)

– Logic Fabric: 800 MHz

– Block RAM: 550 MHz

– DSP Block: 480 MHz

– Nios II/f: 240 MHz
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FPGA Design Processes

● How do we improve overlay performance?
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Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD
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Overlay Design Goals
● Abundant Parallelism

– SIMD and MIMD

● High Clock Frequency (Fmax)
● Low Architectural Overhead

– Low CPI, instruction count

● Few Stalls
– Data and Control dependencies, Memory latency

● Simple and Minimal
● Congruent to underlying FPGA

– Word widths, pipeline depths, primitives
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Multi-Threaded Overlay Architecture
● Must pipeline to absorb FPGA delays

– Problem: dependencies between pipeline stages
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Multi-Threaded Overlay Architecture
● Must pipeline to absorb FPGA delays

– Problem: dependencies between pipeline stages

● Proposed solution: fully-pipelined multi-threading
– Full pipelining to maximize Fmax

– “Single-cycle” thread instructions over entire pipeline

– Multiple threads for SIMD and MIMD parallelism

● Only allow fixed round-robin scheduling
– Unlike HEP, Tera, UTMT II, CUSTARD, NetThreads

– No pipeline dependencies (almost...)

– Determinism enables thread composition
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Self-Loop Characterization (BRAM)

398 MHz

● Accounts for interconnect and clock-to-out delay
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Self-Loop Characterization (BRAM)

398 MHz 656 MHz

531 MHz 710 MHz

● Accounts for interconnect and clock-to-out delay
● Minimum clock pulse width of 500 to 550 MHz
● Absolute upper frequency limit on Stratix IV
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Overlay High-Level Architecture
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Overlay High-Level Architecture
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Memory High-Level Architecture
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Memory High-Level Architecture
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Dual-Pipeline Multiplier
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Dual-Pipeline Multiplier

480 MHz

480 MHz
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Dual-Pipeline Multiplier

600 MHz
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Fully-Pipelined ALU
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Fully-Pipelined ALU

Logic Unit
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Fully-Pipelined ALU

600 MHz
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Fully-Pipelined ALU
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Octavo Soft-Processor

● Reaches 550 MHz on Stratix IV FPGA
● 8 threads (fixed round-robin)
● 1024 36-bit integer words for each I/A/B memory
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Octavo Soft-Processor

● Reaches 550 MHz on Stratix IV FPGA
● 8 threads (fixed round-robin)
● 1024 36-bit integer words for each I/A/B memory

T7    T6   T5    T4     T3      T2         T1          T0         T7         T6
(Previous Round)
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Instruction Memory
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Empty Pipeline Stages

● Derived from BRAM self-loop characterization
● Used for special functions later...



38

A and B Data Memories

● Memory-mapped I/O ports for Accelerators
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Controller

● Computes next PC for each thread (8 PCs)
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ALU

● Output (R) written to all memories



41

Data Path

● 8 stages (2 read, 4 compute, 2 write)
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Control Path

● 8 stages to match Data Path
● Offset due to empty stages (1,2,3)
● 1-cycle RAW hazard from ALU to Instr. Mem.
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High Fmax over Design Space
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High Fmax over Design Space

36 bits
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Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism
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Tiling Overlay Architectures
● Tiling: duplicating in 2-D for parallelism

– Datapaths: SIMD

– Processors: MIMD

● CAD optimizations now worsen performance!
● Simple way to steer CAD tool

– ...without source annotations or per-node CAD
● R. Scoville, “Register Duplication for Timing Closure”,   

Altera Wiki, 2011

– ...without increasing CAD processing time

● Meshes of Scalar and SIMD Octavo Cores
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Tiling Datapaths for SIMD
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Multi-Local Logic

● Same simultaneous inputs and/or states
● CAD tool “de-duplicates” to save area
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Harmful Optimization

● Same simultaneous inputs and/or states
● CAD tool “de-duplicates” to save area
● But creates artificial critical paths!
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Logical Partitioning

● Partition each Lane as a separate netlist
● Prevents optimizations across partitions
● Easily avoids harmful optimizations...
● ...without preventing useful ones!
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Impact on Speed
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Flat: 373 MHz

Partitioning a 32-Way SIMD Octavo
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Flat: 373 MHz Per-Lane: 489 MHz

Partitioning a 32-Way SIMD Octavo
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Meshes of Octavo Cores

● Scalar or SIMD Cores
● New Multi-Localities
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Meshes of Octavo Cores

● Scalar or SIMD Cores
● New Multi-Localities

● 3-bit thread counter
● 1 per Core

# #

##
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Mesh of 102 Octavo Cores
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Mesh of 102 Scalar Octavos (17x6)

Flat: 331 MHz
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Mesh of 102 Scalar Octavos (17x6)

Flat: 331 MHz Per-Lane: 489 MHz
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Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control (per thread)

– Worsened by hardware assistance
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Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control (per thread)

– Worsened by hardware assistance

● Solutions
– Extract overhead as “sub-programs” (per thread)

– Execute them in parallel along the pipeline

– Decreases Fmax 6.1%, increases area 73%*
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Sequential Sub-Programs in MIPS
outer: seed_ptr = ptr_init
inner: temp = MEM[seed_ptr]
       if (temp < 0):
           goto outer
       temp2 = temp & 1
       if (temp2 == 1):
           temp = (temp * 3) + 1
       else:
           temp = temp / 2
       MEM[seed_ptr] = temp
       seed_ptr += 1
       OUTPUT = temp
       goto inner

● Flow-control
● Addressing
● Useful work
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Sequential Sub-Programs in Octavo
outer:  ADD seed_ptr, ptr_init, 0
inner:  LW  temp, seed_ptr
        BLTZn outer, temp
        BEVNn even,  temp
        MUL temp, temp, 3
        ADD temp, temp, 1
        JMP output
even:   SRA temp, temp, 1
output: SW  temp, seed_ptr
        ADD seed_ptr, seed_ptr, 1
        SW  temp, OUTPUT
        JMP inner

● Flow-control
● Addressing
● Useful work
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Removing Flow-Control Overhead
outer:  ADD seed_ptr, ptr_init, 0
inner:  LW  temp, seed_ptr
        BLTZn outer, temp
        BEVNn even,  temp
        MUL temp, temp, 3
        ADD temp, temp, 1
        JMP output
even:   SRA temp, temp, 1
output: SW  temp, seed_ptr
        ADD seed_ptr, seed_ptr, 1
        SW  temp, OUTPUT
        JMP inner

● Flow-control
● Addressing
● Useful work
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Parallel Sub-Programs in Octavo
outer:  ADD seed_ptr, ptr_init, 0
inner:  LW  temp, seed_ptr
        BLTZn outer, temp
        BEVNn even,  temp
        MUL temp, temp, 3
        ADD temp, temp, 1
        JMP output
even:   SRA temp, temp, 1
output: SW  temp, seed_ptr
        ADD seed_ptr, seed_ptr, 1
        SW  temp, OUTPUT
        JMP inner

● Flow-control
● Addressing
● Useful work
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Parallel Sub-Programs in Octavo

outer:  ADD seed_ptr, ptr_init, 0
inner:  LW  temp, seed_ptr
        MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
        ADD temp, temp, 1 ; JMP output
even:   SRA temp, temp, 1
output: SW  temp, seed_ptr
        SW  temp, OUTPUT  ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work
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Parallel Sub-Programs in Octavo

outer:  ADD seed_ptr, ptr_init, 0
inner:  LW  temp, seed_ptr
        MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
        ADD temp, temp, 1 ; JMP output
even:   SRA temp, temp, 1
output: SW  temp, seed_ptr
        SW  temp, OUTPUT  ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work



75
Hailstone Increment Reverse FIR FSM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Unrolled ("perfect" MIPS) Looping (modified Octavo)

Speedups



76
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Reduced-Overhead Octavo
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Reduced-Overhead Octavo

(Branches not in fetched instructions!)

Branch Trigger Module (BTM) 
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Reduced-Overhead Octavo

Address Offset Module (AOM) 

(One entry for each instruction operand)
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Benchmarking
● Compares FPGA design processes:
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Benchmarking
● Compares FPGA design processes:

– Octavo (Multi-Threaded Soft-Processor)

– MXP (Soft Vector Processor)
● A. Severance, J. Edwards, H. Omidian, G. Lemieux, “Soft 

Vector Processors with Streaming Pipelines”, FPGA 2014

– LegUp (plain C HLS)
● A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,        

T. Czajkowski,  S. D. Brown, J. H. Anderson, “LegUp: An 
Open-source High-level  Synthesis Tool for FPGA-based 
Processor/Accelerator Systems”, TRETS, Sept. 2013

– Verilog (hand-optimized HDL for speed)

● All results relative to a Scalar Octavo core



85

Octavo

● 1 to 32 SIMD Datapaths total (-L1 to -L32)
● Each Datapath has Accelerators on I/O Ports:

– Accumulator

– Array Reversal Channel
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MXP

● -V1 to -V32 Vector Lanes, with table-lookups
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Sequential Speedup
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Sequential Speedup
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Parallel Speedup
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Parallel Speedup
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Summary of Contributions
● How do we improve overlay performance?

1. Octavo: 500+ MHz soft-processor
● Operates at >90% of absolute maximum on Stratix IV FPGA
● C. E. LaForest, J. G. Steffan, “Octavo: An FPGA-Centric Processor Family”,        
FPGA 2012

2. Preserved performance under scaling
● e.g.: Fmax -22% over 102x scaling
● C. E. LaForest, J. G. Steffan, “Maximizing Speed and Density of Tiled FPGA Overlays 
via Partitioning”, ICFPT 2013

3. Overlap execution overhead with useful work
● Better speedup than loop unrolling on “perfect” MIPS CPU
● C. E. LaForest, J. H. Anderson, J. G. Steffan, “Approaching Overhead-Free Execution 
on FPGA Soft-Processors”, ICFPT 2014
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● Programming Support
● Further reduce execution overhead
● Increase resource diversity
● Increase efficiency

– Non-branching code

– Internal Memory bandwidth

– Bit-level Parallelism

– ALU Utilization

– Measure/Reduce Power

Future Work
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Future Work

https://github.com/laforest/Octavo



102

Extra Slides
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Impact on Area
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Impact on Area

5% area gap
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AOM/BTM Configurations
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Logic Element (LE)
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Logic Cluster (LC)
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Switch Boxes and Connection Blocks
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Generic Island-Style FPGA
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Hard Blocks (RAM, DSP)
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Interconnect Delay Dominates
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Fmax vs. Memory Depth
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Fmax vs. Memory Depth
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Branch Trigger Module
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Branch Trigger Module
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Address Offset Module
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Address Offset Module
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Efficiency Increase
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Efficiency Increase

Hailstone Increment Reverse FIR FSM
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Parallel Speedup
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Sequential Area Ratios
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Parallel Area Ratios
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Planning for Larger Systems

● Problems
– Inefficient use of memory (overlapping)

– Wasting I/O ports on low-traffic control hardware

– Software busy-wait loops for I/O

● Solutions
– Extending the write address space (2 spare bits)

– Predicating instructions on I/O port readiness

– Decreases Fmax 4.5%, increases area 5.5%
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Instruction I/O Predication

● Empty/Full bit on each read/write I/O port
● Annul instruction if not all addressed ports ready
● Re-issue instruction next thread cycle


