

Stack Architecture and Flat Memory
For Faster Syscalls

By: Eric LaForest

Background:

Switching between user and kernel mode can be expensive due to
TLB flushes and saving processor state. This overhead negatively
impacts fine-grained systems such as microkernel OSes.

Premise:

Use a simpler memory and processor architectures to improve
the performance of mode switches.

Address Space

Key Points:
●Flat address space: no virtual memory
●Memory-mapped I/O for disk, cycle counter, and console
●Address space after physical RAM is mapped to disk by kernel

1

Stack Architecture Summary

DS: Data Stack
RS: Return Stack
A: Address Register
IR: Instruction Reg.
PC: Program Counter
MEM: Main Memory

Key Points:
●Stacks are non-addressable and on-chip
●All calculations done on top of Data Stack
●Memory load/store from top of Data Stack using Address Register
●Subroutine return addresses held in Return Stack
●Data can be moved between stacks
●Code is not position-independent (branches are absolute)

2

Virtualization
LB: Lower Memory Bound
UB: Upper Memory Bound
TPC: Trap Program Counter
Mode: User/Super. Mode Bit

Key Points:
●Memory load/store outside of memory bounds will cause a trap
●Return To User (RTU) privileged instruction to enter User Mode
●Executing RTU in User Mode causes a trap, used for syscalls

3

State After A Trap
(UB): User Upper Bound
(LB): User Lower Bound
(IR): User Instr. Reg.
(PC): User Prog. Count.
(TPC): Trap Prog. Count.
Super: Supervisor Mode

Key Points:
●Trap to Supervisor Mode executes in two cycles
●Memory bounds set to maximum range to make traps impossible
●Return to User Mode is the exact reverse process
●No memory traffic other than an instruction fetch

4

Access To Memory
Two ways for a process to access data from outside its bounds:

Trap:
The process attempts to directly read/write the data, causing a trap
to kernel which decides whether to complete the operation or deny
access to memory.

Syscall:
The process places a syscall number on the Data Stack and
executes a Return To User (RTU) instruction, causing a trap to kernel.

Tests

getpid(): have a process get its Process ID from its header

byte read: read one byte from a cached disk block
 (Linux reads a byte, Stack reads an int)

5

Test Results

 (cycles)
Test Linux Stack Speedup
­­­­­­­­­­­­­­­­­­­ ­­­­­ ­­­­­ ­­­­­­­
getpid() trap: N/A 98 3.22

getpid() syscall: 316 81 3.90

byte read trap: N/A 105 |
 | 5.87
byte read syscall: 616 N/A* |

Linux results from lmbench 3.0-a7-1 on kernel 2.6.20.6
on 2.2GHz AMD Athlon™ 64 with warm cache.

Stack results from cycle-accurate simulator running a simple kernel.

*Stack syscall reads entire block, trap returns one buffered byte

6

Conclusions
●A stack architecture and flat memory can improve syscall performance.

●Performance speedup is not the expected order of magnitude as
 most of the cycles (~70) are spent saving/restoring state and
 checking permissions.

●However, Linux was tested in ideal conditions (no TLB misses)

●Finally: improved performance on much simpler hardware than x86.

Further Work
●Simplifying stack trap mechanism: don't copy LB/UB to stacks on trap,
 let the kernel remember it per process.

●Extend trap mechanism to subroutine calls.

●Alternatively, remove initial trap checks by reducing source of traps
 to one method only (call, RTU, or mem. trap).

●Managing flat, non-virtual memory by using cheap cross-domain calls
 to dynamically generated code (fast IPC).

7

