ECE 1754

Loop Transformations

by: Eric LaForest
Motivation

- Improving loop behaviour/performance
 - usually parallelism
 - sometimes memory, register usage
Motivation

• Improving loop behaviour/performance
 – usually parallelism
 – sometimes memory, register usage

• Why focus on loops?
 – they contain most of the busy code
Motivation

• Improving loop behaviour/performance
 – usually parallelism
 – sometimes memory, register usage
• Why focus on loops?
 – they contain most of the busy code
 – informal proof:
 • else, program size would be proportional to data size
Data-Flow-Based Transformations
Strength Reduction (Loop-Based)

- Replaces an expression in a loop with an equivalent one that uses a less expensive operator

- Before

 \[
 \text{do } i = 1, n \\
 \quad a[i] = a[i] + c \times i \\
 \text{end do}
 \]

- After

 \[
 T = c \\
 \text{do } i = 1, n \\
 \quad a[i] = a[i] + T \\
 \quad T = T + c \\
 \text{end do}
 \]

- Similar operations for exponentiation, sign reversal, and division, where economical.
Induction Variable Elimination

• Frees the register used by the variable, reduces the number of operations in the loop framework.

 - Before
    ```c
    for(i = 0; i < n; i++){
        a[i] = a[i] + c;
    }
    ```

 - After
    ```c
    A = &a;
    T = &a + n;
    while(A < T){
        *A = *A + c;
        A++;
    }
    ```
Loop-Invariant Code Motion

- A specific case of code hoisting
- Needs a register to hold the invariant value
 - Ex: multi-dim. indices, pointers, structures

Before

```plaintext
do i = 1, n
  a[i] = a[i] + sqrt(x)
end do
```

After

```plaintext
if (n > 0) C = sqrt(x)
do i = 1, n
  a[i] = a[i] + C
end do
```
Loop Unswitching

- **What:**
 - Moving loop-invariant conditionals outside of a loop.

- **How:**
 - replicate loop inside each branch

- **Benefits:**
 - no conditional testing each iteration
 - smaller loops
 - expose parallelism
Loop Unswitching

• Before

 do i = 2, n

 a[i] = a[i] + c

 if (x < 7) then
 b[i] = a[i] * c[i]
 else
 b[i] = a[i-1] * b[i-1]
 end if

 end do

• After

 if (n > 2) then
 if (x < 7) then

 do all i = 2, n
 a[i] = a[i] + c
 b[i] = a[i] * c[i]

 end do
 else

 do i = 2, n
 a[i] = a[i] + c
 b[i] = a[i-1] * b[i-1]

 end do
 end if

 end if
Loop Reordering Transformations
(changing the relative iteration order of nested loops)
Loop Interchange

- Exchange loops in a perfect nest.
- Benefits:
 - enable vectorization
 - improve parallelism by increasing granularity
 - reduce stride (and thus improve cache behaviour)
 - move loop-invariant expressions to inner loop
- Legal when:
 - new dependencies and loop bounds are legal
Loop Interchange

- Before

  ```
  do i = 1, n
    do j = 1, n
      b[i] = b[i] + a[i,j]
    end do
  end do
  ```

- After

  ```
  do j = 1, n
    do i = 1, n
      b[i] = b[i] + a[i,j]
    end do
  end do
  ```
Loop Interchange

do i = 2, n
 do j = 1, n-1
 a[i,j] = a[i-1,j+1]
 end do
end do

• Cannot be interchanged due to (1,-1) dependence.
 – would end up using a prior uncomputed value
Loop Skewing

- Used in wavefront computations

- How:
 - By adding the outer loop index multiplied by a skew factor, f, to the bounds of the inner iteration variable, and then subtracting the same quantity from every use of the inner variable.

- Always legal because of subtraction.

- Benefit:
 - allows inner loop (once exchanged) to execute in parallel.
Loop Skewing

• Before

do i = 2, n-1

do j = 2, m-1

a[i,j] = (a[a−1,j] + a[i,j−1] + a[i+1,j] + a[i,j+1])/4

 end do

end do
{(1,0),(0,1)}

• After Skewing (f = 1)

do i = 2, n-1

do j = i+2, i+m−1

a[i,j−i] = (a[a−1,j−i] + a[i,j−1−i] + a[i+1,j−i] + a[i,j+1−i])/4

 end do

end do
{(1,1),(0,1)}
Loop Skewing

- After Skewing (f = 1)

\[
\begin{align*}
\text{do } i &= 2, n-1 \\
\text{do } j &= i+2, i+m-1 \\
 a[i,j-i] &= \left(a[a-1,j-i] + a[i,j-1-i] + a[i+1,j-i] + a[i,j+1-i] \right) / 4 \\
\text{end do} \\
\text{end do} \\
\end{align*}
\]

- After Interchange

\[
\begin{align*}
\text{do } j &= 4, m+n-2 \\
\text{do } i &= \max(2, j-m+1), \min(n-1, j-2) \\
 a[i,j-i] &= \left(a[a-1,j-i] + a[i,j-1-i] + a[i+1,j-i] + a[i,j+1-i] \right) / 4 \\
\text{end do} \\
\text{end do} \\
\end{align*}
\]
Loop Reversal

• Changes the iteration direction
• By making the iteration variable run down to zero, the loop condition reduces to a BNEZ.
• May eliminate temporary arrays (see later)
• Legal when resulting dependence vector remains lexicographically positive
 – This also helps loop interchange.
Loop Reversal

- **Before**

  ```plaintext
do i = 1, n
    do j = 1, n
      a[i,j] = a[i-1,j+1] + 1
    end do
  end do
(1,-1)
```

- **After**

  ```plaintext
do i = 1, n
    do j = 1, n, -1
      a[i,j] = a[i-1,j+1] + 1
    end do
  end do
(1,1)
```
Strip Mining

• Adjusts the granularity of an operation
 – usually for vectorization
 – also controlling array size, grouping operations
• Often requires other transforms first
Strip Mining

• Before
 do i = 1, n
 a[i] = a[i] + c
 end do

• After
 TN = (n/64)*64
 do TI = 1, TN, 64
 a[TI:TI+63] = a[TI:TI+63] + c
 end do
 do i= TN+1, n
 a[i] = a[i] + c
 end do
Cycle Shrinking

- Specialization of strip mining:
 - parallelize when dependence distance > 1
- Legal when:
 - distance must be constant and positive
Cycle Shrinking

• Before

 do i = 1, n
 a[i+k] = b[i]
 b[i+k] = a[i] + c[i]
 end do

• After

 do TI = 1, n, k
 do all i = TI, TI+k-1
 a[i+k] = b[i]
 b[i+k] = a[i] + c[i]
 end do all
 end do
Loop Tiling

- Multidimensional specialization of strip mining
- Goal: to improve cache reuse
- Adjacent loops can be tiled if they can be interchanged.
Loop Tiling

- Before

do i = 1, n
 do j = 1, n
 a[i,j] = b[j,i]
 end do

end do

- After

do TI = 1, n, 64
 do TJ = 1, n, 64
 do i = TI, min(TI+63, n)
 do j = TJ, min(TJ+63, n)
 a[i,j] = b[j,i]
 end do
 end do
 end do
 end do
Loop Fission

- a.k.a. Loop Distribution
- Divide loop statements into separate similar loops
- Benefits:
 - create perfect loops nests
 - reduce dependences, memory use
 - improve locality, register reuse
- Legal when sub-loops are placed in same dependency order as original statements.
Loop Fission

- Before

 \[
 \text{do } i = 1, n \\
 \quad a[i] = a[i] + c \\
 \quad x[i+1] = x[i] \times 7 + x[i+1] + a[i] \\
 \text{end do}
 \]

- After

 \[
 \text{do all } i = 1, n \\
 \quad a[i] = a[i] + c \\
 \text{end do all} \\
 \text{do } i = 1, n \\
 \quad x[i+1] = x[i] \times 7 + x[i+1] + a[i] \\
 \text{end do}
 \]
Loop Fusion

• a.k.a. loop jamming

• Legal when bounds are identical and when not inducing dependencies (S2 < S1).

• Benefits:
 - reduced loop overhead
 - improved parallelism, locality
 - fix load balance
Restructuring Transformations

(Alters the structure, but not the computations or iteration order)
Loop Unrolling

• Replicates the loop body

• Benefits:
 - reduces loop overhead
 - increased ILP (esp. VLIW)
 - improved locality (consecutive elements)

• Always legal.
Loop Unrolling

• Before

do i = 2, n-1

a[i] = a[i] + a[i-1] * a[i+1]
end do

• After

do i = 1, n-2, 2

a[i] = a[i] + a[i-1] * a[i+1]

a[i+1] = a[i+1] + a[i] * a[i+2]
end do

if (mod(n-2,2) = 1) then

a[n-1] = a[n-1] + a[n-2] * a[n]
end if
Software Pipelining

• Before
 do i = 1, n
 a[i] = a[i] + c
 end do

• After (approx.)
 do i = 1, n, 3
 a[i] = a[i] + c
 a[i+1] = a[i+1] + c
 a[i+2] = a[i+2] + c
 end do

Note: Assume a 2-way superscalar CPU
Loop Coalescing

• Combines a loop nest into a single loop
 – results in a single induction variable
• Always legal: doesn't change iteration order
• Improves load balancing on parallel machines
Loop Coalescing

• Before
 do all i = 1, n
 do all j = 1, m
 a[i,j] = a[i,j] + c
 end do all
 end do all

• After
 do all T = 1, n*m
 i = ((T-1) / m) * m + 1
 j = mod(T-1, m) + 1
 a[i,j] = a[i,j] + c
 end do all

Note: assume n, m slightly larger than P
Loop Collapsing

- Reduce the number of loop dimensions
- Eliminates overhead of nested or multidimensional loops
- Best when stride is constant
Loop Collapsing

• Before
 do all \(i = 1, n \)
 do all \(j = 1, m \)
 \(a[i,j] = a[i,j] + c \)
 end do all
 end do all

• After
 real \(TA[n*m] \)
 equivalence(\(TA, a \))
 do all \(T = 1, n*m \)
 \(TA[T] = TA[T] + c \)
 end do all
Loop Peeling

- Extract a number of iterations at start or end
- Reduces dependencies, allows adjusting bounds for later loop fusion
- Always legal
Loop Peeling

• Before

do i = 2, n
 b[i] = b[i] + b[2]
 end do

do all i = 3, n
 a[i] = a[i] + c
 end do all

• After

 if (2 <= n) then
 end if

do all i = 3, n
 b[i] = b[i] + b[2]
 a[i] = a[i] + c
 end do all
Loop Normalization

• Converts induction variables to be of the form:
 – $i = 1, n, 1$

• Makes analysis easier
Loop Normalization

- Before
 do i = 1, n
 a[i] = a[i] + c
end do
 do i = 2, n+1
 b[i] = a[i-1] * b[i]
 end do

- After
 do i = 1, n
 a[i] = a[i] + c
 end do
 do i = 1, n
 b[i+1] = a[i] * b[i+1]
 end do

note: new loops can be fused
Loop Spreading

- Move some of the second to the first
- Enables ILP by stepping over dependences
- Delay 2nd loop by max. dep. distance between 2nd and 1st loop statements, plus 1.
Loop Spreading

• Before

\[
\text{do } i = 1, \frac{n}{2} \\
\quad a[i+1] = a[i+1] + a[i] \\
\text{end do} \\
\text{do } i = 1, n-3 \\
\quad b[i+1] = b[i+1] + b[i] \times a[i+3] \\
\text{end do}
\]

• After

\[
\text{do } i = 1, \frac{n}{2} \\
\quad a[i+1] = a[i+1] + a[i] \\
\quad \text{COBEGIN} \\
\quad \quad a[i+1] = a[i+1] + a[i] \\
\quad \quad \text{if}(i > 3) \quad \text{then} \\
\quad \quad \quad b[i-2] = b[i-2] + b[i-3] \times a[i] \\
\quad \quad \text{end if} \\
\quad \text{COEND} \\
\text{end do} \\
\text{do } i = \frac{n}{2}-3, n-3 \\
\quad b[i+1] = b[i+1] + b[i] \times a[i+3] \\
\text{end do}
\]
Replacement Transformations

(these change everything)
Reduction Recognition

• Before
 do i = 1, n
 s = s + a[i]
 end do

• After
 real TS[64]
 TS[1:64] = 0.0
 do TI = 1, n, 64
 TS[1:64] = TS[1:64] + a[TI: TI+63]
 end do
 do TI = 1, 64
 s = s + TS[TI]
 end do

note: legal if *fully* associative (watch out for FP ops...)
Array Statement Scalarization

• What do you do when you can't vectorize in hardware?

• Before

• After (wrong)
 \[
 \begin{align*}
 &\text{do } i = 2, n-1 \\
 &\quad a[i] = a[i] + a[i-1] \\
 &\text{end do}
 \end{align*}
 \]
Array Statement Scalarization

• Before

• After (wrong)

 \[
 \begin{align*}
 &\text{do } i = 2, \ n-1 \\
 &\quad a[i] = a[i] + a[a-1]\end{align*}
 \]
 end do

• After (right)

 \[
 \begin{align*}
 &\text{do } i = 2, \ n-1 \\
 &\quad T[i] = a[i] + a[i-1] \\
 &\quad \text{end do} \\
 &\text{do } i = 2, \ n-1 \\
 &\quad a[i] = T[i] \\
 &\quad \text{end do}
 \end{align*}
 \]
Array Statement Scalarization

• After (right)

 do $i = 2, n-1$

 $T[i] = a[i] + a[a-1]$

 end do

 do $i = 2, n-1$

 $a[i] = T[i]$

 end do

• After (even better)

 do $i = n-1, 2, -1$

 $a[i] = a[i] + a[a-1]$

 end do
Array Statement Scalarization

• However:
• must use a temporary, because:
 \[
 \text{do } i = 2, n-1 \\
 \quad a[i] = a[i] + a[i-1] + a[i+1] \\
 \text{end do}
 \]
• has antidependence either way.
Memory Access Transformations

(love your DRAM)
Array Padding

• Before

 real a[8, 512]

 do i = 1, 512
 a[1, i] = a[1, i] + c
 end do

• After

 real a[9, 512]

 do i = 1, 512
 a[1, i] = a[1, i] + c
 end do

note: assumes 8 banks of memory, similar for cache and TLB sets
Scalar Expansion

- Converts scalars to vectors
- Removes antidependences from temporaries
- Must be done when vectorizing
Scalar Expansion

- Before

do i = 1, n

c = b[i]

a[i] = a[i] + c

end do

- After

real T[n]

do all i = 1, n

T[i] = b[i]

a[i] = a[i] + T[i]

end do all
Array Contraction

• Before

```plaintext
real T[n,n]
do i = 1, n
    do all j = 1, n
        T[i,j] = a[i,j]*3
        b[i,j] = T[i,j] + b[i,j]/T[i,j]
    end do all
end do
```

• After

```plaintext
real T[n]
do i = 1, n
    do all j = 1, n
        T[j] = a[i,j]*3
        b[i,j] = T[j] + b[i,j]/T[j]
    end do all
end do
```
Scalar Replacement

• Before

do i = 1, n
 do j = 1, n
 total[i] = total[i] + a[i,j]
 end do
 end do

• After

do i = 1, n
 T = total[i]
 do j = 1, n
 T = T + a[i,j]
 end do
 total[i] = T
 end do
Transformations for Parallel Machines

(sharing the load)
Guard Introduction

• Before

\[
\begin{align*}
 \text{do } i &= 1, n \\
 a[i] &= a[i] + c \\
 b[i] &= b[i] + c \\
 \text{end do}
\end{align*}
\]

• After

\[
\begin{align*}
 LBA &= (n/Pnum) \times Pid + 1 \\
 UBA &= (n/Pnum) \times (Pid + 1) \\
 LBB &= (n/Pnum) \times Pid + 1 \\
 UBB &= (n/Pnum) \times (Pid + 1) \\
 \text{do } i &= 1, n \\
 \quad &\text{if } (LBA \leq 1 \text{ and } i \leq UBA) \\
 \quad &\quad a[i] = a[i] + c \\
 \quad &\text{if } (LBB \leq 1 \text{ and } i \leq UBB) \\
 \quad &\quad b[i] = b[i] + c \\
 \quad &\text{end do}
\end{align*}
\]
Redundant Guard Elimination

• Before

\[LBA = \left(\frac{n}{Pnum} \right) \times Pid + 1 \]
\[UBA = \left(\frac{n}{Pnum} \right) \times (Pid + 1) \]
\[LBB = \left(\frac{n}{Pnum} \right) \times Pid + 1 \]
\[UBB = \left(\frac{n}{Pnum} \right) \times (Pid + 1) \]

\[
\text{do i = 1, n}
\]
\[
\text{if (LBA <= 1 and i <= UBA)}
\]
\[
\text{a[i] = a[i] + c}
\]
\[
\text{if (LBB <= 1 and i <= UBB)}
\]
\[
\text{b[i] = b[i] + c}
\]
\[
\text{end do}
\]

• After

\[LB = \left(\frac{n}{Pnum} \right) \times Pid + 1 \]
\[UB = \left(\frac{n}{Pnum} \right) \times (Pid + 1) \]

\[
\text{do i = 1, n}
\]
\[
\text{if (LB <= 1 and i <= UB)}
\]
\[
\text{a[i] = a[i] + c}
\]
\[
\text{b[i] = b[i] + c}
\]
\[
\text{end do}
\]
Bounds Reduction

• After

```plaintext
LB = (n/Pnum)*Pid + 1
UB = (n/Pnum)*(Pid + 1)
do i = LB, UB
a[i] = a[i] + c
b[i] = b[i] + c
end do
```

• Before

```plaintext
LB = (n/Pnum)*Pid + 1
UB = (n/Pnum)*(Pid + 1)
do i = 1, n
    if (LB <= 1 .and. i <= UB)
        a[i] = a[i] + c
        b[i] = b[i] + c
    end if
end do
```
That's all folks!