ECE1724 Project Final Report:
HashLife on GPU

Charles Eric LaForest

April 14, 2010

Contents
1 Introduction
2 Related Work

3 LifeAlgorithm
3.1 HashLife e e e e
3.1.1 Quad-Tree Representation i
3.1.2 Recursive Memoized Evaluation e

4 Implementation
4.1 BasicLifeonCPUand GPU e e e
4.2 ’HashLife'onthe CPU e e
4.3 ’HashLife'onthe GPU. e e e

5 Methodology
6 Evaluation

7 Conclusions

List of Figures

1 Quad-treerepresentationofcellspace o e

2 Exploded view of 9-tree of overlapping nodes used for casapn of the parent node (largest square
INCENLIE) o o o

3 R-Pentomino (black cellsare Live) e e

List of Tables

1 Milliseconds per iteration of Life and HashLife implemations.
2 Speedup comparisons between all implementations of lnifeHashLife. The speedups are for the
rows, relativetothe columns. e

1 Introduction

Cellular automata (CAs) are interesting parallel distiglolusystems with only local interactions. They can express
great complexity emerging from very simple rules [11] angiehbeen posited as a discrete model of physics [12].
| hope that further improvements in computing CAs can transf other parallel distributed systems such as neural
networks.

Conway’s Game of Life [2] is a well-know 2D cellular automatystem. It's algorithm is simple, well-understood,
and the structures which emerge from it have been extegsitadied and cataloged [8], up to and including imple-
mentations of Turing-complete systems.

Although the direct computation of the next state of a Life @Atraightforward, the computation time increases
linearly with the size of the CA being computed. To improw gierformance, Bill Gosper created the HashLife
algorithm [3][7], which accelerates computation by sel/erders of magnitude. Using HashLife, it becomes possible
to rapidly calculate quintillions of iterations over qualiins of cells on commaodity uniprocessors.

The goal of this project is to see if a GPU-based implementtaif HashLife is feasible and practical. Although
the algorithm seems ill-suited to a GPU, the speedup olane single CPU is such that even within the limitations
of a GPU, the additional parallelism and greater memory héattti might improve the performance of the algorithm
and grant a further speedup over a direct evaluation of aCAe

2 Related Work

There have been several implementations of Life on GPUS][#][13][5], but none using anything but the original
algorithm. It is possible to use SIMD tricks to represenesal/CA cells within a single memory word and thus evalu-
ate them all at once [1], but they fundamentally do not afltentnderlying algorithm. The best-known implementation
of CAs is the freely available Golly platform [10], which idgments both Life and HashLife, as well as its own variant
called QuickLife.

3 LifeAlgorithm

The basic algorithm of Conway’s Game of Life is simple:

Assume a 2D rectangular grid of cells, with each cell hgugight neighbours.
Cells may be initially either Alive or Dead.
If a live cell has fewer than two or more than three live héigurs, it dies.

If a dead cell has more than two live neighbours, it comédi$sto

a M w N oPE

Else, the cell remains in its current state.

This algorithm is usually implemented using two grids, tteesof one updating the state of the other in alternation.
The edges of the grid can either be considered as dead aaifgyoloop back to the opposite side. Although simple,
the basic Life algorithm does an amount of work and uses amnuatrad memory proportional to the number of cells
that must be updated. Some Life patterns take a large nurfibgcles and cells to evolve into interesting states.

3.1 HashLife

Bill Gosper invented the HashLife algorithm [3][7] whichplaces the direct 2D representation and evaluation of the
entire CA with a quad-tree to compress the spatial repratient evaluates the tree nodes recursively, and uses a
hash table to memoize the result of the recursive evaluétioction at each level of the quad-tree. As the quad-tree
and the memoized evaluation find the common patterns in thetli®y accelerate its evaluation by several orders of
magnitude.

3.1.1 Quad-TreeRepresentation

In HashLife, a quad-tree node represent§ a« N space. It contains four child node pointers (clockwise: ngy,
se, sw) to nodes representing %fs X % sub-spaces, and one result pointer to Mex N node which represents
the next state of the whole current node, if known. Note tba&fgiven node, the result node is only valid for the
(N —1) x (N —1) nodes inside, as the next state of the edgemost cells caaroniputed without more neighbours.
This detail is what makes HashLife difficult to implement|dsexplain shortly.

This recursive description bottoms-out wh&nis equal to four, as it is the smallest space where the cerlial
have enough neighbours to have their next state evaluateeteTare only2'¢ such4 x 4 leaf nodes, and thus all
possible cases can be enumerated practically as 2D arrdybeinresult pointers pre-computed using the basic Life
algorithm.

nw ne

sw se

hE

Figure 1: Quad-tree representation of cell space

3.1.2 Recursive Memoized Evaluation

To evaluate a given quad-tree node, the HashLife algoritheh ¢dhecks if the result pointer is set. If so, then the
corresponding node pointer of the parent node is replactudtieé child’s result pointer. If the result pointer is not,se
then the algorithm recurses down into the child nodes tofdaey have been pre-evaluated.

Unfortunately, a simple recursion into each child node efc¢hrrent quad-tree node would not yield the correct
results: anV x N space can only update its inng¥ — 1) x (N — 1) cells since the cells on the edge do not have
enough neighbours to evaluate their next state, thus theukhvibe gaps of cells that are never updated.

This is where the HashLife algorithm gets complicated:dastof recursing down the actual child nodes at a given
level, we must temporarily create a new set of nine overtapgi x & child nodes with overlappingy — 1) x (§ —1)
updated cell areas which then compose the updated1) x (N —1) cells of the starting node at the current quad-tree
level. This new node is entered into a hash table, and bothgpeopriate child pointer of the parent node and the
result node of the original current node are updated withattaress of the new node. For even greater speedup, the
algorithm can then recurse into the updafdd— 1) x (N — 1) space of cells to calculate several iterations ahead.

Despite this complicated recursion, it is easy to see tHatcaiurrences of a pattern reduce to a single quad-
tree node in a hash table, and that the computation of anjccs@tjuence of patterns (and there are many of those)
eventually reduces to a series of pointer dereferenceseitheesult is a tremendous spatial and temporal compression

NgNya
Eplg
KRR

Figure 2: Exploded view of 9-tree of overlapping nodes useccbmputation of the parent node (largest square in
centre)

4 Implementation

In the interest of simplicity and to keep the data represemalgorithm-independent, | represented the cells with
unsigned bytes, despite each cell having only two stateskifp32 cells into one unsigned integer would have been
much more efficient, but might have posed problems and itaggies later which would undermine performance

comparisons.

41 BasicLifeon CPU and GPU

The CPU version of Life simply iterates through the cellgd®the status of its neighbours, and updates the state of
the same cell in another grid. The position of the old and ffaated grids is exchanged and the process repeated. For
simplicity, the edge cells are not updated and considered fiXhe only optimization is that the algorithm traverses
the grid in a cache-friendly, column-major order: updatngell preloads the cache with most of the neighbours of
the next cell.

The GPU version is a direct translation of the CPU versionchezell is assigned one thread, and its new state
is written to another grid. The host then calls the same kexgain with the location of the grids switched. Shared
thread memory is not used, but since each thread will acadlssic the same pattern (the three neighbouring cells
above and below their own cell, plus the east and west neigkbthe global memory accesses are coalesced.

4.2 'HashLife on the CPU

| attempted to implement HashLife on the CPU with an eye téuitsre GPU implementation: without recursion and
without dynamic memory allocation. While this design deriswould have resulted in a more even comparison of
the CPU and GPU implementations, it made the already coatplicrecursion even more difficult to understand and
implement. There were too many simultaneous constraints.

| had to give up and settle on implementing only the bottonshtayer of HashLife: a pre-computed 64k-entry
array of all possibld x 4 cell grids, each with a result index pointing to anotheryasatry which gives the next state
of the2 x 2 inner cells.

The CPU implementation iterates as before on the whole britlskips every other cell in both the X and Y
dimension, making the base uni2a 2 array of cells. The neighbours of these cells are used to atpe index of
the corresponding x 4 precomputed array entry, which then points to the entry tithupdated value of thex 2.
Thus the loop iterations perform lookups of overlapping 4 cell spaces instead of directly applying the rules of Life
to each individual cell.

4.3 'HashLife on the GPU.

The GPU implementation of the bottom layer of HashLife is recli translation from the CPU. However, the CPU
pre-computes the array dfx 4 spaces and copies it to the GPU global memory. Since thiy anm@ad only, this
memory is then mapped to a texture to benefit from hardwardgc

Instead of each cell having a thread which updates its siatg every other cell in the X and Y axis has a thread
assigned to it. This reduces the number of threads by 75%hveiminates redundant traffic and wasted work running
threads which would do nothing. As the threads still readnibith, south, east, and west neighbours of eagh2
space in the same sequential pattern, the memory accesszis malesced.

5 Methodology

Evaluating the performance and correctness of Life and Heesis easy: compare the wall-clock times and ensure
that identical starting patterns yield identical final patts after the same number of iterations. Even a single irror
the state of a cell can permanently alter the evolution obtrerall grid, so the initial test of correctness is to vispal
compare the evolution of different implementations ovemalé grid (32 x 32 for example), using a pattern with a
known progression. The algorithms are applied uniformlgrahe entire grid, therefore a correct progression on a
small grid implies a correct progression on any larger gkéhally, since both algorithms are purely discrete and
integer-based, there are no issues with floating-pointgioeaton the GPU.

6 Evaluation

Experimental Setup All implementations of Life and HashLife were tested on a3%8iz Core 2 quad-core CPU
with 4GB of RAM (unknown type and speed), although there ity @me thread of execution. The GPU used is an
NVIDIA GeForce GTX 280 with 1GB of RAM. All the grids were saueawith 22,000 cells on a side. Given one byte
per cell, this translates to about 484MB, enabling two sudsgo fit in the video card memory at one time, allowing
alternating updates.

All cells are initially set to 'dead’ in both grids, and a siitakt pattern is then inserted at the centre of the first grid.
This pattern is the R-Pentomino, which is a simple patter® célls which is known to evolve for 1103 iterations, at
which point it settles into a number of stable, cyclical pats.

T

Figure 3: R-Pentomino (black cells are Live)

The grids are then copied to the GPU (when used), and no fudttia transfers occur during measurement. Only
the kernel is restarted at each iteration. The number ofrgéinas is set to 100 for CPU implementations and 4000
for the GPU, to achieve similar benchmark times of 300 to Hfbrds. Table 1 shows the number of milliseconds
for each iteration of each algorithm, and the resulting dppe are worked out in Table 2.

Speedup and Memory Bandwidth The raw speedup granted by moving Life to the GPU is 38.4xati#el to that
Life baseline, the speedup granted by the partial impleat&mt of HashLife is 1.53x on the CPU, and only 1.18x on
the GPU. The GPU implementation was already memory bountddnmafited nonetheless from caching of the texture
memory, since the total number of cells accessed remairswite the same. The benefit is relatively small as the
texture caches do not reduce latency, but merely free up gtobal memory bandwidth. In contrast, the CPU caches
do reduce latency and thus achieve a greater speedup.

Thread Dispatching It was expected that reducing the number of threads by 758 @jor using texture memory)
would have a positive performance impact since otherwisst miothe threads would do nothing at all, reducing the
utilization of the processors. However, there was no sicgnifi difference in performance, further supporting thaide
that access to global memory is the limiting factor. Thiklatchange when going from 484 million threads to only
121 million also suggests that the dispatching of threadstiemely efficient.

| Milliseconds per Iteratior]

CPU | GPU
Life 4612 | 120
HashLife | 3006 | 102

Table 1: Milliseconds per iteration of Life and HashLife ilamentations.

| Speedups |
Life (CPU) | Life (GPU) | HashLife (CPU)| HashLife (GPU)
Life (CPU) 1 0.0260 0.652 0.0221
Life (GPU) 38.4 1 25.1 0.850
HashLife (CPU) 1.53 0.0399 1 0.0339
HashLife (GPU) 45.2 1.18 29.5 1

Table 2: Speedup comparisons between all implementatiobgeoand HashLife. The speedups are for the rows,
relative to the columns.

7 Conclusions

My inability to really implement HashLife on the GPU is diglieening, and the resulting speedup not much better
than a direct translation of Life to the GPU. It was howevealwageable educational experience as | learnt a little
more about the CUDA memory hierarchy and corrected my assamihat dispatching threads costs time as it does
on operating systems running on CPUs.

In retrospect, | made one major mistake: | tackled both the @Rd GPU implementations of HashLife at the
same time. | would have been better off to implement a plaishde on the CPU with recursion and dynamic
memory, and then find out how to transform it to operate withloem.

In fact, | can now see that the solution is to collapse the ¢uaelspatial representation into the temporary 9-tree
used for computation. It may appear inefficient, but the bgad of five extra pointers per node would have been
rapidly absorbed as the grid size increased, and the stii@aton would have benefited performance also. Any
remaining memory on the GPU would then be used for a largi $tash table which would use linear probing to
resolve collisions (e.qg.: finds the next empty spot), andtejlel entries in a Least-Recently-Used manner.

Also, the recursion could have been converted into itematiith some help from the host CPU:

1. Run the kernel on one thread at the root of the tree to clidakdeds updating or if the next state is in the hash
table, return the status back to the CPU.

2. Based on that status, run the kernel on up-to four threadseonext level down of the quad-tree 'subset’ and
check if updating is needed.

3. If part of the tree needs updating, run the kernel on nineattrs on the 'temporary’ overlapping 9-tree child
nodes used for computation. Return their status to the Hest C

4. Repeat until all 'quad-tree’ nodes are visited, and dte®-nodes are updated, then start over at the root node.

Despite the overhead of repeatedly launching kernels apging data back to the CPU, the algorithm would still
behave as it should and try to reduce the computations totabihlookups.

References

[1] FINCH, T. LIAR: Life in a register. htt p: //fanf. i vejournal .conm 81169. ht m , January 2008.
Accessed March 11th 2010.

[2] GARDNER, M. Mathematical GamesScientific American 22@.970), 120-123.

[3] GosPeER R. W. Exploiting regularities in large cellular spac&hysica D: Nonlinear Phenomena Lanuary
1984), 75-80. Online dtt t p: / / dx. doi . org/ 10. 1016/ 0167- 2789(84) 90251- 3.

[4] PERUMALLA, K. S.,AND AABY, B. G. Data parallel execution challenges and runtime pevémce of agent
simulations on GPUs. 18pringSim '08: Proceedings of the 2008 Spring simulatiofticanferencgSan Diego,
CA, USA, 2008), Society for Computer Simulation Internagg pp. 116-123.

[5] PETRICEK, T. Accelerator and F# (Il.): The Game of Life on GPUnhtt p://t omasp. net/ bl og/
accel erator-1ife-game. aspx, Dec 2009. Accessed March 15th 2010.

[6] RACARR. GPU Life.htt p:// bl ogs. gnone. or g/ racarr/ 2009/ 01/ 26/ gpu- | i f e/ ,January 2009.
Author pseudonym only, Accessed March 15th 2010.

[7] Rokickl, T. G. An Algorithm for Compressing Space and Tiniat. Dobb’s (April 2006). htt p: / / www.
dr dobbs. conl j ava/ 184406478, Accessed March 15th 2010.

[8] SILVER, S. A., AND MARTIN, E. Life Lexicon. http://ww. bitstorm org/ganeoflife/
| exi con/ , December 2006. Accessed March 15th 2010.

[9] TARDITI, D., PURI, S.,AND OGLESBY, J. Accelerator: using data parallelism to program GPUgéeral-
purpose uses. IASPLOS-XII: Proceedings of the 12th international confeeeon Architectural support for
programming languages and operating systéheaw York, NY, USA, 2006), ACM, pp. 325-335.

[10] TREVORROW A., AND RoKICKI, T. Golly.ht t p: // gol | y. sour cef or ge. net /. An open source, Cross-
platform application for exploring Conway’s Game of Lifedaather cellular automata. Accessed March 15th
2010.

[11] WoLFRAM, S. A new kind of sciencéNolfram Media Inc., Champaign, llinois, US, United Stat2802.

[12] ZusE, K. Calculating SpaceMIT (Proj. MAC), Cambridge, Mass., 1970. MIT Technical figkation AZT-70-
164-GEMIT.

[13] ZVOLD. Conway’s "Life" and "Brian’s Brain" cellular @omata using GPUht t p: // zvol d. bl ogspot .
coni 2010/ 01/ conways- | i f e- and- bri ans- brai n-cel | ul ar. ht M, January 2010. Accessed
March 15th 2010, Author’s name is unknown, pseudonym given.

