Reliably passes a synchronous posedge pulse from one clock domain to another when we don't know anything about the relative clock frequencies or the pulse duration. Uses a 4-phase asynchronous handshake.
The recommended input is a single-cycle pulse in the sending clock domain. The output is a single-cycle pulse in the receiving clock domain.
We can't simply use a CDC Synchronizer to pass a pulse of unknown duration between clock domains of unknown relation, as the receiving clock may not be able to sample the pulse correctly. So, we solve this by:
This process then happens all over again with the cleared level signal, which does not generate a pulse in the receiving clock domain, until the system is back into its original rest state, ready to receive another input pulse. This process of raising a signal, waiting for a response to rise, then dropping the first signal, then waiting for the response to drop, is a 4-phase asynchronous handshake. It does not depends on the timing of the signals, only their sequence.
The time taken for the 4-phase handshake to complete puts an upper limit on the input pulse rate, that also depends on the receiving clock frequency. If we exceed this rate, input pulses will be lost, as the input pulse latch will have not been cleared yet.
At the upper limit, when the receiving clock frequency is fast enough to be "infinite" from the point of view of the sending clock (i.e.: the handshake response arrives soon enough within a single cycle of the sending clock to meet setup timing), then we only need to sum up the latencies on the sending clock side:
Thus there must be at an absolute minimum 8 idle sending clock cycles
between input pulses, or one input pulse every 9th sending clock cycle.
(We can't overlap the clearing and latching, since clear has priority over
input data in a Register.) Fortunately, we don't have to
compute inter-pulse delays for every possible sending to receiving clock
frequency ratio a system will encounter. We can instead signal ready
on
the sending side by noting when both the initial sending level and the
returned response are low, denoting a system at rest ready for the next
4-phase handshake.
`default_nettype none module CDC_Pulse_Synchronizer_4phase #( parameter CDC_EXTRA_DEPTH = 0 // 0 or greater, if necessary ) ( input wire sending_clock, input wire sending_pulse_in, output reg sending_ready, input wire receiving_clock, output wire receiving_pulse_out ); initial begin sending_ready = 1'b0; end
Capture the sending pulse into a level, and clear the latch once the level has passed into and returned from the receiving clock domain and the sending pulse has ended. This gating prevents a cycle of latch set/reset if the sending pulse is longer than the round-trip latency of level signal to and back from the receiving clock domain, causing a train of pulses in the receiving clock domain.
wire sending_level; reg clear_sending = 1'b0; wire level_response; always @(*) begin clear_sending = (level_response == 1'b1) && (sending_pulse_in == 1'b0); end Pulse_Latch #( .RESET_VALUE (1'b0) ) sending_pulse_capture ( .clock (sending_clock), .clear (clear_sending), .pulse_in (sending_pulse_in), .level_out (sending_level) );
Pass the latched sending pulse to the receiving clock domain
wire receiving_level; CDC_Bit_Synchronizer #( .EXTRA_DEPTH (CDC_EXTRA_DEPTH) ) to_receiving ( .receiving_clock (receiving_clock), .bit_in (sending_level), .bit_out (receiving_level) );
Now pass the synchronized level back to the sending clock domain to signal that the CDC is complete and to clear the latch.
CDC_Bit_Synchronizer #( .EXTRA_DEPTH (CDC_EXTRA_DEPTH) ) to_sending ( .receiving_clock (sending_clock), .bit_in (receiving_level), .bit_out (level_response) );
In parallel to all of the above, signal when both the sending level and the returned level from the receiving clock domain are low, indicating readiness for the next 4-phase handshake. An input pulse sent while ready is low will be lost.
always @(*) begin sending_ready = (sending_level == 1'b0) && (level_response == 1'b0); end
Finally, convert the receiving level to a pulse in the receiving clock domain
Pulse_Generator receiving_level_to_pulse ( .clock (receiving_clock), .level_in (receiving_level), .pulse_posedge_out (receiving_pulse_out), // verilator lint_off PINCONNECTEMPTY .pulse_negedge_out (), .pulse_anyedge_out () // verilator lint_on PINCONNECTEMPTY ); endmodule